- ギャップ寄与の評価が大切
- MECE意識で多角的分析を実践
- 定量と定性の視点を重視
寄与度はどう評価?
各要素が結果―計画と実績のギャップ(増加・減少)の中でそれぞれどの程度寄与しているかを算出し、その割合に基づいて対策の優先順位を検討する点に大変学びがありました。ギャップへの寄与度を明確にすることで、プラス・マイナスに関わらず項目同士の比較が容易になると実感しました。
分析の流れはどうなってる?
実際の分析作業では、次のステップを経ると効果的だと理解しました。まずは、MECEを意識して可能性のある切り口を複数挙げ、問題の原因に関する仮説をいくつか立てます。その後、手持ちのデータでそれらの仮説を検証し、どの切り口が最も問題に影響を及ぼしているかを見極めるという流れです。この際、定性的な情報も加味し、全体の優先順位を整理してからデータ分析に取り掛かることが重要だと感じました。
データ集計はどう見直す?
また、現時点で隔週配信されるデータについては、分析というより単なる集計作業にとどまっている印象を受けます。定例ミーティングでも、主にデータの紹介が中心となり、個人の推測に基づいたコメントで終わってしまっている点が課題です。今後は、まず各データの変化(増減)に着目し、MECEを意識した複数の切り口と仮説を立てる作業を進めていきたいと考えています。
AI活用のコツは何だろ?
さらに、切り口や仮説を出す際に社内で利用している生成AIの活用方法や、留意すべきポイント、コツなどがあればぜひ共有していただきたいと思います。
総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。