- 目についた情報の偏重避けだ
- 問題は具体的に整理だ
- 層別・変数分解を活用だ
なぜ講座を受講した?
過去にデータを収集しても、問題解決に結びつかなかった経験があり、今回の講座を受講しようと決めた大きな理由となりました。また、事例で示されていた、目についた情報に振り回されることと、都合の良い情報だけを集めて一方的に結論づけてしまう傾向にも、心当たりがあります。
どう問題状況を整理する?
問題に直面したときには、What、Where、Why、Howの観点から状況を具体的に整理し、「何が問題であるか」を明確にするステップが非常に有効であると学びました。ロジックツリーやMECEを意識して要素を分解することにより、問題の特定と解決策の検討をスムーズに進めることができると感じています。さらに、数値の変化だけに注目するのではなく、現場で実際に起こっていることを確認する大切さも再認識しました。
どの分析手法が効果的?
エンゲージメント調査のデータ分析においては、層別分解と変数分解という手法が有効だと感じています。例えば、従業員情報を扱う場合、「年代」「部署」「役職」などの軸で層別に分解することが考えられます。また、事例で示されていた売上分析の際の「客数」と「客単価」という変数分解のアプローチは、イメージしやすいと感じました。一方で、実務上の問題に対しては、どの要素をどのような切り口で洗い出すか、その具体的な方法については、まだ十分にイメージできていない点が課題だと感じています。
総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。