0%
あと3分で読了
point-icon この記事のポイント!
  1. MECEと4W1Hで全体像把握
  2. 大枠と細部の分析移行重視
  3. 実務で柔軟性と均衡意識

どうしてMECEを使う?


問題解決に向けた分析では、論理的な手順であるMECEを活用し、重複や抜け漏れがないように分解する必要があります。ただし、細かすぎる分析や大項目だけの分析では十分な結果が得られない点を踏まえ、まずは4W1Hを用いて課題の背後にある「あるべき姿」を明確にすることが重要だと感じています。

大枠再検討のタイミングは?


また、業務上の具体的な課題に取り組む際、どの段階で細かい分析から大枠の再検討に移るかについて悩むことが多いです。実際の業務、例えば採用活動や人事情報管理において、4W1Hをどのように活用し「あるべき姿」を具体化していくかについて、ぜひ意見を聞いてみたいと思います。

柔軟な実務のコツは?


さらに、4W1HとMECEを実務に取り入れる際の柔軟性やバランスをどのように意識しているのか、そのコツについても知見を得られればと考えています。
※上記の投稿は、受講生より許可を得て掲載しています。

関連記事

トップ5%が実践する!論理的思考力向上のアクションプラン external link

人気記事

help icon

ナノ単科とは?

実践につながる基礎スキルを習得するカリキュラム
グロービス経営大学院 単科生制度の、さらにライトなプログラムが登場。
1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。

ナノ単科受講生の声

この記事と同じ科目を受講したナノ単科受講生のリアルな感想をご紹介します。
avatar
R.M
20代 女性 一般社員/職員
受講科目
データ・アナリティクス入門
実践につながる 学習習慣が身に付く 仲間と学び合える

総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。

avatar
A.S
30代 女性
受講科目
データ・アナリティクス入門

良かった点
データ分析の前提の考え方、意識すべきことが体系的に学べた。
違う業種の人の意見が聞けたのも貴重な機会だったと思う。

気になる点
口コミ通りといえばそうだが、想像していたよりも実践的なことは割と少なかった印象がある。
アプリやページの不調があったのが気になった。
また、グループワークはテーマによってグダグダ感が出てしまった時があった。

avatar
Y.M
30代 女性
受講科目
データ・アナリティクス入門
実践につながる わかりやすい モチベーションが上がる

大変有意義な1.5ヶ月でした。データ分析を学びたい!と飛びつきましたが、課題解決スキルが根本的に重要であり、その中でデータ分析がどう活かされるか?の流れを実践とともに学びました。
育児と仕事との学びの両立に苦戦しましたが、なんとか食らいついてよかったです!ありがとうございました。

「データ・アナリティクス入門」を受講した方の学び

データ・アナリティクス入門

ロジックでひらく学びの扉

ロジックツリーで学んだことは? 売上や経営課題をロジックツリーのフレームワークに当てはめ、各要素を分解して検討する考え方を実際に体験できたことは、大きな学びとなりました。 設問のコツは何? 設問1では、問題点を洗い出す際に案がなかなか浮かばず苦戦しましたが、What/Where/Why/Howの視点から考えるというコツを掴むことができました。このアプローチは、ロジックツリーの活用とあわせて、今週の課題における大きなポイントとなりました。 分析の偏りはどう? また、生徒の傾向把握のための分析項目を検討する際、定性的な項目に偏ってしまったことが反省点です。今後は、まず定量的な視点から傾向を捉えることを意識する必要があると感じました。 関係構築のヒントは? さらに、クライアントから寄せられるマーケティング課題は、仮説をもとにお話をいただくことが多いですが、自分なりに要因を検討し、第三者として意見を述べることで、クライアントとの関係構築や提案の検討に役立つと実感しました。MECEの考え方も、実際には十分に実践できていない点があると感じ、重要性を再認識する機会となりました。

データ・アナリティクス入門

目的明確化で未来をつかむ分析法

目的はっきり? 分析を始める際、いきなり具体的な点に飛び込むのではなく、まず目的やあるべき姿を明確に言語化することの大切さを改めて感じました。そうすることで、意味のない分析に陥るリスクを避け、論理的かつ効果的な提案が生まれると考えます。 全体像は捉えられる? また、分析の過程では、ある事象が存在する場合と存在しない場合とを比較する手法の有用性や、あまり細部にこだわりすぎず全体像を捉えることの重要性についても学びました。問題解決には、現状の不備を解消して基準に近づけるアプローチと、現状からさらにプラスへと発展させるアプローチの二種類があることを認識しました。 差異は数値化できる? 特に「あるべき姿との差異を数値化」する観点は、実際の課題解決において具体的な提案をすぐに導き出せる非常に有用な方法だと感じました。例えば、社員アンケートなどから各部署毎に学びたい内容を集計し、その結果を踏まえて適切な研修会の実施を提案する、といったアプローチが現実に通用するものだと理解しました。

データ・アナリティクス入門

ありたい姿探しの実践ノート

業務整理の難しさは? 講義と実践では、「どうありたいか」という観点からシンプルに考えることができました。しかし、実際の業務では問題と課題が混在するため、整理が難しいと感じています。特に、MECEやロジックツリーなどのフレームワークを用いて質の高い項目を設定し、問題を抽出する作業に苦労しました。 企画の方向性は? 来期以降の研修や社内イベントの企画提案においては、まずありたい姿を起点に問題を正しく抽出することが重要と考えています。また、関係者間で問題意識や目的に対する共通認識を持つことで、企画が中途半端になったり、方向性がぶれることを避け、成果を出すことを目指しています。 切り口に悩む理由は? 一方で、問題抽出の切り口や、フレームワークの階層の粒度についてはまだ悩みがあります。皆さんの視点や考え方をぜひ伺いたいと思います。

データ・アナリティクス入門

体系的発想で挑む問題解決

体系的な解決策は? 問題解決には、場当たり的な発想ではなく、体系立てたステップが必要です。思いつきの解決策は再現性に欠け、結果を運任せにしてしまう危険性が高いと感じます。 理想設定に注意? また、あるべき姿を安易に設定することにも注意が必要です。設定された理想像が必ずしも正常あるいは最適であるとは限らず、前提条件や構造を十分に検討せずに理想を置くと、誤った方向に問題解決が進む可能性があります。そのため、現状とあるべき姿を定量的に定義し、比較することが重要だと思います。 切り分けの疑問点? さらに、what/Whereの切り分けや層別分解、変数分解といったフレームワークを使用する場合も、その切り口が曖昧でMECEが十分でなければ、誤ったwhatやHowに綱がり、問題解決の本質から遠ざかる恐れがあります。 感度向上はどう? 感度の高い切り口を設定するには、フレームワークを形式的に使用するのではなく、日常的に構造を理解し、考える地道な訓練が必要だと実感しました。 戦略的拡大の鍵? 例えば、サービスの対象を、これまで好調に推移している既存の顧客層から未開拓の顧客層へ拡大する際には、現状とあるべき姿を定量化し、売上構造を変数分解、顧客属性やニーズを層別分解する手法を活用します。整理したデータをもとに、what/Where、what/Howのステップに沿って、効果的かつ再現性のある施策を決定することが求められます。 「感度の良い切り口のコツ」

データ・アナリティクス入門

壁も学びに変えるナノ単科の軌跡

生徒数未達の原因は? 最初に、生徒数が計画通り集まらなかったという点に着目し、問題の特定が「生徒数が計画通り集まらなかったこと」であると明確にすべきだと理解しました。費用が多いという回答もありましたが、シンプルに整理するためには、問題に対する回答もロジックツリーやMECEの考えに基づいて、焦点を絞ることが重要だと感じました。 問題解決はどう進む? また、問題解決には「正しい状態に戻す方法」と「ありたい姿に到達する方法」の2種類があること、そのためには関係者全員で合意形成を図ることが必要だと思いました。特に社内での打ち合わせにおいて、その前提がずれると会議や資料の内容にも影響が出る点を実感しました。 チーム目標はどう決まる? 一人駐在員としてチームを率いる中で、今年の営業戦略が細かくMECEできていなかったために、チーム員の目標設定が曖昧になっていることに気づきました。そこでまずチーム全体の目標を定め、問題解決の4つのステップ(What、Where、Why、How)を用いて自分なりに分析し、優先順位を決めた上で目標を共有しました。これにより、各個人の目標もより明確に設定できると考えています。

データ・アナリティクス入門

ギャップを捉える段階戦略

STEPの切り分けで何が得られる? アンドリューのケースを通して、改善策を一気に考えるのではなく、段階的なSTEPに切り分ける方法の有効性と堅実性を実感しました。まず、当初計画と実績を並べ、どこに一番大きなギャップがあるかを明確に特定し、その後、売上高に焦点を絞った上で顧客分析を行う流れが非常にスムーズだと感じました。 教育業界の難しさは? また、売上を創出する観点から教育ビジネスに携わる立場として、いくつか気になる点がありました。まず、学校ごとに単価を変えるのは公平性の観点から難しい点、次に、最近の学習指導要領改定以降、競争が激化しているため、顧客数の獲得が以前よりも一層困難になっている点が挙げられます。さらに、競合他社の中には無償で教材提供を行うスキームを構築しているところもあり、学校内での内製化や、教材費以外の親の支出項目も、売上に影響を与える要因と言えます。 追加分析の必要性は? 一方、当社で予実分析を行う際、インパクト指標が売上であるのかどうかについて関心があります。もしも最も大きなインパクトが人件費にある場合、部署ごとの人件費や年齢構成、社会人歴、家族構成など、どのような分析が追加で必要になるのか、今後の検討が求められると考えています。

人気記事

「MECE×4W1Hで導く理想の実現」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right