- 複数視点で仮説網羅を重視
- 反証含むデータ収集が肝要
- 部門横断の視点で問題解決
仮説全体はどう捉える?
仮説の立て方について学んだ内容の中で、まず複数の仮説を設定し、その網羅性を高めることが重要であると感じました。一つの視点に偏らず、様々な可能性を検討することで、問題の全体像を見失わないアプローチが実現できると思います。
裏付けデータはどう検討?
また、仮説を裏付けるデータだけでなく、反証する可能性のあるデータも収集する必要性を学びました。データの集め方一つとっても、どの側面から情報を集めるかによって、結果の信頼性が大きく変わるため、留意する点が多いと感じました。
他部門への影響はどんな?
さらに、全社的な課題の場合、仮説は自分の部門だけに留まらず、他の部門にも影響を及ぼす可能性があるため、その立て方には工夫が求められると実感しました。たとえば、営業利益の低下という問題は、売上減少だけが原因か、製造ラインの効率低下が関与しているのかといった複数の視点から検討する必要があります。局所的な原因にとらわれず、マクロな視点で多層的かつ複眼的な仮説を立て、各部門としっかりコミュニケーションをとることが、問題解決に向けて不可欠だと考えました。
総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。