クリティカルシンキング入門

クリティカルシンキングで開花する新たな視野

クリティカルシンキングの重要性とは? クリティカルシンキングは、すべての専門スキルの土台となります。人は「偏り」や「制約」の中で思考しているため、「3つの視(視点・視座・視野)」を意識することが大切です。これまで、人が自分が考えやすいことに寄ってしまうことは当たり前だと思い、意識していませんでした。今後は、自身の成長のために「意識していなかったことを意識して取り組む」ことを習慣づけたいと思います。 グループワークで得た新たな発見とは? 他者の考えを聞くことで、新たな発見や気づきを得ることが重要です。また、いかに自分が無意識に「偏り」と「制約」の中で思考しているかを認識しました。今後、グループワークのスムーズな進行を目指して、チーム内で短時間で結論をまとめるためのファシリテーションスキルを向上させたいと思います。 仮説検証計画で大切にすべきことは? 論理的思考を持って、施策の目的を整理し、仮説を立て、期待できる効果を見据え、検証方法を把握することが大切です。視野を広く持ち、他部署だけでなく会社全体への影響を考慮した施策検討を行うことが肝要です。 効果的なコミュニケーションの取り方は? 「自分が相手を理解」し、「相手に自分の考えが伝わる」やりとりを心掛ける必要があります。相手が「何を知りたいのか」を引き出すコミュニケーションや想像力を鍛え、相手の立場や状況を加味した伝え方を意識することが重要です。 まずは、学びの1週目として、日常的に論理的思考を実践するため以下に取り組みたいと思います。 リモートワークでの効果的なチャット術とは? 当社はリモートワークが多く、上司も会議が多いため、チャットでのやりとりがメインになっています。特に上司は大量にくるチャットをさばきながら重要事項を頭に入れなくてはなりません。 そこで、「相手が知りたいこと」や「自分が伝えたい要点」がわかりやすい文章構成を意識したチャット文章のやりとりを心掛けたいです。そして、論理的な「文章(考えを練る時間がある)」から「会話(即興)」へと、アウトプットのレベルを上げていきたいと思います。

データ・アナリティクス入門

目的と仮説で切り拓く未来

比較の本質って何? これまでのデータ分析において、私は「分析の本質は比較である」という点を十分に理解していなかったと感じています。適切なデータ選定ができず、チーム内で議論する際にも目的が曖昧であったため、集合データをそのまま使ってしまい、結果として具体的な結論に至らなかったケースが多くありました。 仮説は本当に必要? また、分析はあくまで目的を達成するための手段であるにもかかわらず、そのプロセスにおいて「仮説を立てる」という基本的なステップを十分に意識せずに進めてしまっていたことも大きな問題でした。 分析準備は万全? こうした経験から、まずデータ分析に入る前の準備段階を丁寧に実施することの重要性を痛感しました。具体的には、分析の目的を明確にし、仮説をしっかりと立てること。そして、分析の途中で常に最初の目的に沿って進んでいるかを確認する習慣が必要であると感じています。 依頼目的は明確? 業務の現場では、依頼元が提示する抽象的な目的に基づいて競合や市場の動向、新たな開発分野の抽出などが求められる中、漠然とした依頼内容のままで分析を進めてしまうケースがあります。その結果、得られたデータが本当に必要な情報を反映しているのか疑問が残る場合があり、依頼元側も求める結果が得られていないと感じることが少なくありません。 質向上の秘訣は何? 今回学んだ内容は、まさにこうした状況で活かすことができると考えています。相手が何を知りたいのか、抽象的な目的を具体的に落とし込み、既知の情報などを基に仮説を立てることにより、アウトプットの質を向上させられると実感しました。また、個人としてだけでなく、チーム全体で取り組む際には以下の点を共有し、実践していくことが重要です。 チーム内の確認はどう? まず、分析の目的を明確にし、チーム全体で統一した見解を持つこと。次に、分析前に十分な仮説を立てること、現状を正確に把握すること、分析対象のデータが適正かどうかを確認すること。そして、分析の途中で常に最初の目的に沿っているかどうかをチーム内で確認し合うことが大切だと考えています。

クリティカルシンキング入門

ピラミッドストラクチャーで説明力向上!

説明で何が役立つ? 業務において人に説明したり、相談したりする際には、ピラミッドストラクチャーが非常に役立つと感じています。その理由は大きく三つあります。第一に、自分の主張とそれを支える根拠を整理して記載することで、自分自身も内容をチェックしやすくなることです。第二に、整理された構造により説明が容易になり、相手にも理解してもらいやすくなることです。第三に、ピラミッドストラクチャーを用いることで、自分の意見とその理由を全体的に俯瞰して見ることができる点です。 正確な使い方は? このピラミッドストラクチャーを正確に活用するためには、日本語を正しく使うことが求められます。今週の初めに受けた講義では、日本語を正しく使い、主語と述語を意識することが、ピラミッドストラクチャーを正しく活用するために重要であると改めて実感しました。 相談と企画はどう? 私の業務においては、ピラミッドストラクチャーを特に二つの場面で活用できそうです。まず一つ目はクラウド利用の相談時です。相談者からの質問に対して、ピラミッドストラクチャーを用いて自分の主張とその理由を整理すれば、相手に理解してもらいやすくなり、スムーズに動いてもらうことが期待できます。また、回答する前に自分自身の考えを確認しやすくなります。二つ目は企画の説明時です。ここでも、主張と根拠をピラミッドストラクチャーで整理し、企画資料のスライド作成に役立てることができると考えています。スライドの内容が適切かどうかもこの構造を基に確認できるため、この二つの業務で特に活用を感じています。 復帰後の準備は? 12月に育児休暇から仕事に復帰する際には、日常的に提案や説明が必要となるため、ピラミッドストラクチャーを活用します。主張とそれを支える根拠をノートに記載し、何度も書き直せる環境を整える計画です。その環境が整っていれば、何度もやり直し、自分の考えを深めることができます。これが主張と理由を整理することの鍵となり、ピラミッドストラクチャーの正しい使い方だと考えています。ですので、まずは専用のノートを用意することが行動計画の第一歩です。

マーケティング入門

常に新鮮な学び体験をあなたに

付加価値はどう生まれる? 体験価値を考える際、単に商品を提供するだけでなく、その商品にまつわる体験が加わることで、独自の付加価値が生まれることを実感しました。まず、プラスアルファの体験を正しく把握し、顧客にとってポジティブな印象を与えることが、競合との差別化に直結する点に着目しました。ただし、同じ体験を単調に繰り返すと、その新鮮さや魅力は次第に減衰するため、顧客体験は常に更新し続ける必要があると感じます。 差別化の秘訣は? オンリーワンを実現するためには、まずユニークな差別化を打ち出すことが重要です。たとえば、ある企業は「結果にコミットする」という明確な軸を掲げ、顧客に真剣な取り組みを伝えている点が印象的でした。別の企業は、顧客ニーズの迅速な把握や納品、そして代替機の手配など、スピード面での優位性を存分に活かし、シンプルな設計によりコストを抑えながら高い利益を実現しています。 体験差別の効果は? また、モノを販売するだけでなく、体験を通じた差別化も有効であると感じました。たとえば、ある有名チェーンは独自の空間づくりや接客スタイルで、顧客に特別な居心地の良さを提供しています。このような工夫により、ブランド構築や顧客ロイヤルティの向上が実現し、激しい価格競争に陥らずに済む点が魅力的です。 魅力伝達はどう? 自社に置き換えると、宣伝広告に大きな予算をかけずとも、商品の持つ本来の魅力や価値を消費者に伝えることで着実に売り上げを伸ばしているケースを見ており、マネキン販売などを通じて消費者との接点を増やし、口コミやSNSを活用した広がりが期待できると感じています。 現場戦略は有効? さらに、現場で扱う業務用商品の新規取り扱いの提案や、競合との差別化を図る戦略を考える上では、実際に試飲・試食を行ったり、試供品を提供して顧客に実体験してもらう取り組みが効果的です。その際、商品の味わいやバランス、歴史、供給体制などの差別化ポイントを徹底的に伝えること、そして営業面で迅速かつ柔軟な対応を行うことが、他社に対する大きな強みとなると感じました。

データ・アナリティクス入門

視点を変える学びの切り口

データ収集の視点は? これまで、自身の仮説を実証するためにデータ収集に終始していたことを痛感しました。仮説以外の視点でどのようにデータを集めるべきかが分かっていなかったため、今回「仮説を考えるためのフレームワーク」を学び、今後のデータ分析に活用できると感じました。また、ある仮説に対して別の仮説が成立する可能性への反論を防ぐため、複数の仮説を異なる切り口で立てることの重要性を再認識しました。たとえば、■3C(Customer=市場・顧客、Competitor=競合、Company=自社)や、■4P(Product=製品、Price=価格、Place=場所、Promotion=プロモーション)を利用する考え方は、データ収集の際に既存データのみならず、新たなアンケートやインタビューを通じた情報獲得にも役立ち、説得力のあるデータを生み出すための行動力が養われたと感じています。 社内参加の課題は? また、社内で実施している任意参加のセミナーや施策について、毎回参加する社員と全く参加しない社員の二極化が進んでいる現状を踏まえ、より多くの社員の参加を促すために、3Cや4Pの視点で検討を行いたいと考えています。具体的には、■3Cでは、Customer(市場・顧客)として社員、Competitor(競合)として同時開催予定のイベントの有無、Company(自社)として社員のニーズが満たされているかを検討し、■4Pでは、Product(コンテンツが社員のニーズを満たすか)、Price(参加に見合う価値があるか)、Place(開催方法が参加しやすいか)、Promotion(社内への情報周知が十分か)といった観点で施策の企画を進めます。 意見共有はどう? まずは、今回の学びを一緒に企画・運営するメンバーと共有した上でディスカッションの場を設け、これまでの検証に不足していた視点やデータを補完します。特に、本社以外の全国の拠点の社員にとっては日々のコミュニケーションが行き届いていないため、インタビューなどを通じて意見を聴く機会を設け、次年度に向けた施策の改善に努めたいと思います。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

クリティカルシンキング入門

思考の偏りに気づく!揚げ物と自己反省の旅

自己認識の意義は何? 今回の学習を通じて、私は自由な発想ができる人間が、無意識のうちに偏った考え方をしてしまうことを学びました。それを防ぐためには、「もう一人の自分」を持ち、自分を客観視することが重要であるということです。また、客観的な視点を養うトレーニングとして、他者とのディスカッションが有効であることも知りました。ディスカッションを通じ、自分の意見を述べるよりも、他者の意見を聴くことから多くを学ぶという点が特に印象に残っています。 思考の偏りに気づいたのは? ライブ授業後の懇親会で「揚げ物をからっと揚げるための方法」について話がありましたが、そこで私は早速偏った思考をしていることに気づきました。「もう一人の自分」の視点で考え直した結果、以下の点を補いました。 揚げるコツは何? 揚げ物をからっと揚げるために注意すべきことは3点あります。まず1つ目は揚げ油の温度です。油の温度が下がると、からっと揚げることは難しくなります。挙げ油を多めにするか、揚げる量を少なくして温度を保つことが大切です。また、温度計を使うとわかりやすいです。2つ目は揚げ時間です。材料の種類やサイズに応じて異なるので、注意が必要です。タイマーを利用し、目安の時間で設定することが役立ちます。最後に、衣の作り方についてです。小麦粉を溶く際は混ぜすぎないように注意し、冷たい材料を用いると良い結果が得られます。 改善点はどこに? 以上が揚げ物をからっと揚げるポイントですが、補うべき点や改善点があれば、ご意見いただけると嬉しいです。 伝え方はどうする? さらに、上司に仕事を報告したり、部下に仕事の進め方を説明する際には、伝えるべき情報を整理し、わかりやすくすることが必要だと考えています。また、部下とのコミュニケーションでは、相手の考えを引き出す話し方も意識したいです。話す前に「もう一人の自分」の視点で見直し、考え方に偏りがないか確認する習慣をつけています。相手の話を聞く際も、自分の考えにない点について深く考え、さらに質問を投げかけるように心掛けています。

マーケティング入門

顧客志向で進化する商品企画

講座で何を掴んだ? 講座を通じて「顧客志向」という重要な概念を学び、それを振り返ることで、いくつかのポイントを思い出しました。特に以下の4点は今後の業務に活かしたいと思います。 大事なポイントは? まず、ターゲット層の重要性についてです。商品開発やマーケティングにおいて、ターゲット層のニーズや行動パターンを深く理解することは極めて重要です。次に、競合との差別化についてです。競合と差別化を図るためには独自の価値提案が必要であり、セグメンテーションも欠かせません。さらに、チャネル戦略についても考えました。商品の特性やターゲット層に合わせて最適な販売チャネルを選ぶことは重要で、マーケティングの4Pに含まれる要素です。また、行動することの大切さも学びました。毎回の授業の中で、今日からできる具体的なアクションを考え、実際に行動することで新たな気づきを得ることができました。 ライブは何を促す? ライブ授業では意見交換を通じて忘れていた部分を思い出すことができ、講座の内容を改めて振り返る良い機会となりました。特に、リニューアルに関する質問をしましたが、それも今後の業務に活かす観点から行動に移していくつもりです。 ブランドの意義は? ブランド理解についても自分にはまだ不足があると感じました。顧客に対して、自社やブランドとしてどのような方向を目指しているのか明確にする必要があります。これを改めて整理する機会を設け、自分が考えた商品が顧客志向に沿っているか確認したいと思います。また、チーム内でも意見をすり合わせ、方向性が間違っていないかや他の考え方がないかを深掘りしていくつもりです。 プロジェクトはどう進む? このような取り組みの一環として、商品企画チームでブランド理解を深めるためのプロジェクトを立ち上げることにしました。顧客視点やブランド整理、プロジェクト管理の観点からも学べると期待しています。半期を目標に、プロジェクト内容とスケジュールを考え始め、まずはチームメンバーに相談することからスタートします。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

役職が「係長/主任」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right