クリティカルシンキング入門

異なる視点で磨く伝え方の技術

交流で何を感じた? ①異なる職種や立場の方々との交流を通じた学びでは、社内では当たり前と思われる承認が得られない状況に直面しました。この経験から、自身の話し方や論理的な説明を工夫する重要性を意識しました。グループワークでは、論点を見直すための問いかけができたことも大きな収穫でした。背景として、前提知識が異なるためにフラットな視点で物事を見ることができたことも影響しています。 どのグラフが効果的? ②相手にわかりやすく情報を伝える方法については、社内であまりグラフを作成しなかったため、当初は体系化されていませんでした。しかし、学びを通じて折れ線グラフは推移を示すために、棒グラフは時系列で情報を見せるために有効であるといった具合に、体感的な見やすさを言語化することができました。 どの手順が有効? 効果的な情報の伝達には、「考える→情報を集める→再考する」という手順が大切です。具体的には、文章の目的や読み手、前提情報や懸念点を理解した上でメッセージを組み立てることが求められます。 グラフで何を伝える? また、グラフ作成は、説得や課題把握の一手段ですが、そこから何が言えるかを自分なりに言語化することが重要です。データを元に示唆を発見し、相手や自身を納得させるプロセスが欠かせません。 どの方法で振り返る? 情報の伝達にあたっては、自分が文章を作成する際だけでなく、他者の文章をチェックする機会でも、この学んだ手法を活用しています。プロジェクト完了後の振り返りにおいてもアンケート結果を分析し、最も見やすい形で伝えることに努めています。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

クリティカルシンキング入門

気づきが変えた!思考の深掘り術

なぜ深掘りが重要なのか? 物事に対して「なぜ」と深く掘り下げる姿勢が大切だと気づきました。データや他人の意見を表面的に捉えることが多かったことに改めて気づかされました。クリティカル・シンキングがなぜ必要なのか。物事の意味を深く考えることが、その本質を捉えることに結び付くのだと実感しました。 ロジックツリーで得られる新しい発想とは? また、ロジックツリーの考え方を学び、自分の思いつきに頼った方法から離れることができました。課題に対して原因をカテゴリーに分けて掘り下げることで、新しい発想を得られることがあります。今後もこの考え方を活用していきたいと思います。 なぜデータの深掘りが必要なのか? 具体的には、新商品の企画立案や商品の売上分析の際に役立つと考えています。市場調査や顧客の声を参考にしている中で、データをそのまま受け取ってしまうことがあるため、なぜそのような意見やデータになるのか深掘りする思考を持ち、情報を整理することに努めたいです。また、売上分析では、顧客の感じ方をより深く理解するために「なぜ」を問い続けることで、具体的な施策提案につなげられると考えています。 思考整理の習慣化はどう進める? 一度学んだからといってすぐに身につくわけではありませんが、まずは日々の考え方の習慣づけから始めて、自分の能力として高めていきたいです。例えば、上司に確認する予定の内容について「なぜそう思ったのか」を考え直し、思考整理を進めます。また、現在の課題や案件にロジックツリーを使い、漏れや重複がないかを確認しながら原因と考察をしていく予定です。

戦略思考入門

業務集約で実現した驚きのコスト削減

市場と戦略は合致? スケールメリットといったビジネス戦略の定石を用いる場合、自社でそれが効果的に機能するかを正しく分析することが重要です。戦略を決定する際には次の段階を踏むことが大切です。まず、市場と自社の状況を分析し、自社が置かれている環境を正確に理解します。次に、定石となるビジネスのメリットやデメリットを検証し、比較します。最後に、効果が見込めると判断できたら実行に移ります。 業務集約の効果は? 自部署の業務では、100以上の拠点の業務を1拠点で代行するという形で集約しています。この業務集約は、製造業とは逆向きのスケールメリットを示していると考えられます。例えば、各拠点で個別に行っていた事務作業を1か所に集約することで重複作業を省き、コストダウンを実現しています。また、特定のメンバーで業務を集約することで習熟度が向上し、更なるコスト削減が可能になっています。さらに、AIや自動化技術を導入することで業務効率を高め、さらなるコストダウンが促進されています。 収益拡大の鍵は? ここで得たノウハウをしっかり蓄積し、それをコアコンピタンスとして外部収益の獲得につなげることを目指しています。現在進めている自社内の業務集約・効率化については、さらなる集約可能な工数を探求し、高品質化につなげていくことが求められます。また、外部収益獲得に向けてはターゲットとなる顧客層を明確にし、受託可能な業務範囲を想定して、必要な技術に関する知識を得るために注意を払うことが大切です。ターゲットを明確にし深掘りしていくことが、コアコンピタンスの形成に繋がるでしょう。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

クリティカルシンキング入門

もう一人の自分が語る思考術

自分をどう磨く? クリティカルに考えるためには、自分の中にもう一人の自分を育て、思考のチェックを行うことが大切だと感じます。自分自身の考えを常に見直すことで、より深い洞察を得ることが出来ると実感しました。 多角的に捉える? 物事を一つの視点だけで捉えるのではなく、さまざまな視点や視座、視野を持つことが重要です。あらゆる可能性を排除せず、偏りを防ぐ考え方は、日常の意思決定や行動において大きな役割を果たすと考えます。 クセに気づいてる? また、自分の思考の習慣に気づき、偏らないよう意識することが必要です。これは簡単ではありませんが、「他には?なぜ?」と自問自答する習慣を身につけることで、自分の思考方法やクセを客観的に見ていく努力につながると感じました。 顧客戦略はどう? 対顧客や対得意先を攻略する戦術も、単に自分の経験則だけに頼るのではなく、常に他にできることはないかと考えることが求められます。これにより、より多角的なアプローチが可能になると実感しました。 意見交換はどう? また、チームメンバーとの毎月のアクション振り返りでは、様々な視点や視座を取り入れたディスカッションが非常に有意義です。こうした議論から新たな気づきが生まれるため、全体の活動プランにも多様なアイデアを組み込むことができると感じます。 迅速な判断は? しかし、様々な視点や視座で即座に考えるためには、どうしても時間を要する部分もあり、迅速な判断と多角的思考の両立には課題を感じる場面もあります。今後、これらの思考法をさらに磨いていきたいと思います。

戦略思考入門

戦略実行で未来を自分色に

戦略の重要性は何か? 学習を通じて、戦略には「設計」と「実行」の両輪が不可欠であることを実感しました。これまで戦略立案には特別な能力や豊富な経験が必要だと考えていましたが、実際には「先を見据えた明確なゴール設定」、「やるべきことの取捨選択」、そして「自分ならではの独自性」という3つの要素にまとめられると気づかされました。これらは日常の意思決定にも自然と生かされていることを改めて理解しました。 会議の見直しはどう? 現在は、意思決定機関の見直しという業務に取り組んでいます。具体的には、リーダーシップを発揮できる体制の構築、会議における責任と権限の明確化、そして会議負担の軽減という課題に対応すべく、見直し案の検討から規程改正の承認まで一貫して進めています。 戦略思考をどう磨く? Week1の講義を受講して以降、戦略の立て方次第で結果に到達するまでのスピードが変わることに気づき、如何に戦略思考を取り入れるかが重要であると感じました。そこで、今後の取り組みとして、将来を構想する高い視座、現状と外部環境を的確に分析する力、ステークホルダーを効果的に巻き込む力、そして独自性ある戦略提案力の4点に注力してスキルを向上させていきたいと考えています。 全体を見渡す視点は? これらの能力を伸ばすためには、担当業務にとらわれず、広い視野で全体の構造を俯瞰する必要があります。また、競合や外部環境の分析を通じて課題の本質を見極めるとともに、相手の価値観に響く表現力や、強みと差別化要因を組み合わせた斬新なアイデアの創出が求められると実感しています。

リーダーシップ・キャリアビジョン入門

メンバー任せで自律性UP!経営戦術の新手法

メンバー任せのメリットとデメリットは? メンバーに仕事を任せる際のメリットとデメリットを理解し、エンパワメントが適切かどうかを見極めることが重要です。任せる相手の能力や仕事の理解度、時間的余裕を十分に把握しておく必要があります。こうした理解を怠ると、期待とは異なる結果になったり、相手にとって負担が大きすぎる場合は、精神的混乱を引き起こす恐れがあります。組織や仕事に対するネガティブな感情も生まれる可能性があります。こちら側も余裕がある場面で、エンパワメントスキルを活用し、人材育成を進めていきたいです。 エンパワメント戦術とは? 営業戦術を立てる際には、エンパワメントを活用します。これまでは、商談の手法も自分で考え、メンバーに伝えることが多かったですが、今後は目標や戦略を示した上で、メンバー自らが目標達成に向けて手法を考える機会を提供し、自発的に考え、発言する場を増やして自律性の向上を目指します。また、資料作成や他社への勉強会を任せる時は、相手の理解度を確認し、疑問や質問を解消するための対話を大切にします。不安を取り除くことで、仕事に対する前向きな姿勢を促進します。 どう意見をまとめるべきか? 戦術会議前には、事前に考えて欲しい内容を共有し、会議で意見を発信できる準備を整えます。会議当日は少人数に分かれて意見が出やすい環境を作り、その後、意見を一つにまとめて手法を練り上げていきます。資料作成や勉強会について任せるときは、電話を使った積極的なコミュニケーションを心掛けることが重要です。(勉強会は実施日の2週間前までには必ず行います。)

リーダーシップ・キャリアビジョン入門

エンパワーメントで職場を変えるヒント

エンパワーメントの意味は? エンパワーメントとは、従来の命令管理型とは異なり、目標を明確にし、その達成に向けたプロセスを部下に任せるリーダーシップスタイルであることを学びました。部下の経験や企業の状況によっては、このスタイルが必ずしも適していない場合もあること、そして部下に権限を委ねた際に、それが機能しなかった場合のリスク管理の重要性も理解しました。 目標設定をどう考える? 目標設定の際には、その目標の意義を再確認し、メンバーの共感を引き出すことがパフォーマンスの遂行につながるという確信を持ちました。ちょうど目標を立てる時期に当たり、目標を立てる際には自身で確認できる意義をしっかりと持ちながら設定したいと思います。また、上司にもその目標に同意を得ることが重要だと考えています。その方が、期を通じて支援や指導を受けやすくなるためです。 環境との向き合い方は? 自身の環境や上司・部下関係がエンパワーメントに適していない場合も想定し、無茶をせず、迷惑をかけないように気をつけながら、貢献できそうな部分では積極的に発言・提案を行いたいと思います。また、自身と上司との関係に限らず、他の上司や部下との関係にも引き続き注目したいと考えています。 どう支援するのが良い? 特に、周囲には褒めるスタイルと、できていないことを指摘して危機感を持たせるスタイルが目立ちます。その極端なスタイルの間を若い部下が移動するときに、ギャップに苦労している様子が見受けられます。実体験を共有する以外にサポート方法はないかを考えてみたいと思います。

デザイン思考入門

SCAMPERで広がる多角的発想

アイスブレイクはどうして? 提案の際は、まずアイスブレイクとしてワークショップ形式でアイデア出しを行い、相手の発言を否定せずに思いついたことを記入していました。その後、出されたアイデアに絞って検討を進める流れになりました。 SCAMPER法の効果は? 今回、SCAMPER法については初めて知る機会となりました。従来は「Eliminate:削ぎ落とす」ことに重点を置いていましたが、「Substitute:代用する」や「Put to other uses:転用する」といった視点を活かす機会が十分でなかったと感じています。 評価から何を学ぶ? 後日振り返った際に、ワークショップ形式での意見出しやSCAMPER法を取り入れた点は評価されました。ただし、今後は全ての視点をバランスよく議論に組み込む工夫が必要だというアドバイスを受けました。 効率化は本当に正しい? また、限られた環境で解決しようとする中で、効率化を重視するあまり、組み合わせによって効率がさらに向上する可能性に気づく瞬間もありました。特に、「Adapt:応用する」の視点は分かりやすい一方で、「Combine:組み合わせる」という新たな視点を十分に活用できていなかったと反省しています。 自由な発想は必要? 最後に、子どもの頃に描いた絵のように自由な発想を大切にすること、そしてこれまでの経験がワンパターンになっていないかを常に意識する必要があると実感しました。今回の学びを通じ、効率化を追求しながらも、多角的な視点を持って業務改善に取り組むよう努めたいと思います。

データ・アナリティクス入門

仮説思考で広がる研修の未来

仮説の意味とは? 仮説とは、問題解決や意思決定の基盤となる論点に対する仮の答えであると再認識しました。学習を通じて、仮説には「結論に対する仮説」と「問題解決の仮説」の2種類があることを理解し、特に後者では「Where:問題の所在」「Why:原因」「How:解決策」という3つの視点が重要であると学びました。また、仮説を立てる際には網羅性を意識し、3C(顧客・競合・自社)や4P(製品・価格・流通・プロモーション)などのフレームワークを活用することで、抜け漏れを防ぎ、実行可能な仮説を構築できる点が非常に有用だと感じました。 学びをどう生かす? 今回の学びは、特に新たな研修企画の立案において活かせると考えています。たとえば、受講者が抱える課題や、その解決に向けた最適な研修プログラムを検討する際、これまでの既存の枠組みを超え、より広い視点で仮説を立てることが求められます。3Cを用いて受講者のニーズや組織の目標、そして競合の研修内容を分析することで、より具体的で効果的なカリキュラム設計が可能になるのではないかと思います。 次の研修はどうする? 今後の研修企画では、まず研修の目的と受講者が抱える課題を明確にし、初期段階から3Cや4Pなどのフレームワークを活用して網羅的な仮説設定を行います。また、企画の途中で目的から逸れていないか、あるいは目的自体に誤りがないかを定期的に再検証するプロセスを取り入れる予定です。さらに、既存の研修内容につきましても、この手法を用いて見直しを行い、より精度の高い研修企画の実現に努めたいと考えています。

データ・アナリティクス入門

多角的発想で拓く学びの扉

仮説の立て方は? 仮説を立てる際には、複数の仮説を提示し、網羅性を意識することが大切です。3Cや4Pといったフレームワークを活用すると、仮説を立てやすくなることを実感しました。また、単に考えただけでなく、様々な切り口からアプローチするよう努めることが重要だと感じました。 データ選びはどう? データ収集については、誰にどのように聞くかが非常に大切です。自分に都合の良いデータだけでなく、反対の意見となる情報も収集するよう心掛けています。一見、目の前にある情報だけで判断せず、目的に沿ったデータであるかどうかを考える重要性を改めて感じました。実際、抽出したデータで本当に検証したい内容が導き出せるかを、常に見直す必要があると考えています。 サービスはどう伝わる? 新しい運用やシステムの活用状況、また提供しているサービスがどのようにお客様に届いているかを分析する際は、まず言葉で仮説を立てることに取り組んでいます。これまで、数値を見ただけで直感的に考え、その立証に必要なデータをどう抽出するか検討していましたが、目的に合致しているのか不安に感じることもありました。そのため、自分にとって都合の良いデータだけに偏らないよう、改めて意識しています。 生産性向上はどう? また、社内の生産性向上施策が実際に効果を上げているかを検証する際にも、フレームワークを用いて複数の仮説を立て、網羅的に検討することを意識しています。抽出したデータが目的に沿っているかを確認した上で、そこからどのような結論が導けるのかをしっかり検証することが重要だと感じました。
AIコーチング導線バナー

役職が「一般社員/職員」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right