データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

データ・アナリティクス入門

仮説実験で見える成果への道

ABテストの教訓は何? ABテストで学んだことは、仮説を検証する際に検証対象以外の要素はできるだけ固定することの重要性です。過去には、時期的な要素を十分に考慮せずに振り返りを行った結果、どの部分が効果につながったのかが不明確になった経験があり、今後はこの点に注意していきたいと考えています。 クリエイティブはどう検証? また、クリエイティブの検証においては、検証項目以外の要素が多いため、何を検証するのか、どの要素を変更するのかを明確にする必要性を実感しました。これにより、取り組む際の焦点が定まり、より効果的な結果が得られると考えています。 実施方法はどう評価? 具体的には、広告動画の検証でストーリーの流れはほぼ同じに保ちつつ、一部の要素だけを変更する手法を採用しました。さらに、同じ期間で配信を行い、得られた結果を比較検証することで、効果が認められたものを今後の施策に活かす予定です。 新たな仮説は何から? 今後は、別の項目についても新たな仮説を立て、同様のテストフローを構築していく計画です。

クリティカルシンキング入門

具体と抽象で織りなす理解の旅

新しい考え方は? これまで、フレームワークやその活用経験が物事を考えるために必要だと考えていましたが、今回の学びで、根本的な考え方自体を見直す必要性に気づかされました。 分解のコツは何? 特に、物事を分解して考える際には、具体的な面と抽象的な面のバランスをとりながら、上下左右に視点を移動して検討する手法が印象的でした。この方法により、考え方に偏りが生じるのを防ぎ、全体像を捉えやすくなると感じました。 比較検証はどう考える? また、MECEや3つの視といった考え方は、他社製品や技術との比較検証にも有用だと思います。MECEで必要な比較項目を洗い出し、3つの視では相手に合わせたクリティカルな要素を抽出することで、プロとコンの両面を効果的に整理できると考えています。 意見交換で工夫は? これらの手法は、提案や報告、さらにはプロジェクト内での意見交換の際にも役立つと実感しました。相手に合わせたアプローチを行うためには、柔軟に視点を変え、考え漏れがないよう努めることが不可欠であると感じています。

デザイン思考入門

多様な視点で広がる成長の鍵

異なる視点で見る? フィードバックを受ける際、ユーザー目線とデザイナー視点など、立場を変えて意見をもらうことで、新たな視点や気づきを得られると感じました。また、ストーリーボードを用いることで、テスト対象の体験を具体的にイメージしやすくなり、意見交換がよりスムーズに進む印象です。さまざまな人の考えを聞くことは、次の検討事項に対するアイデアや検討方針を見出すうえでも大いに役立ちます。 同一人物の工夫は? 特に、同一人物からでも視点を変えてフィードバックをもらうという試みは有効だと感じました。例えば、改善提案に対して提案される側だけでなく、上司や同じ部署の人といった異なる立場から意見を求めることで、予想外の気づきが生まれる可能性があります。 次への行動は何? そのためには、あらかじめフィードバックしてもらう視点を検討し提示すること、実際にフィードバックを受ける際にはどの視点で意見が出されるのかを確認すること、そしてフィードバックの内容をまとめ整理し、次のアクションに繋げていくことが重要だと考えます。

データ・アナリティクス入門

仮説を実践!A/Bテスト現場記

目的は明確ですか? まず、A/Bテストを行う際は、目的と仮説を明確にすることが大切です。検証項目をしっかりと設定した上で、テスト対象を1つの要素に絞り、無駄な混乱を避けます。 期間は統一ですか? また、A/Bテストは必ず同じ期間内で同時に実施する必要があります。異なる期間で行ってしまうと、テスト以外の環境要因が影響し、正確な検証が困難になるためです。 仮説の幅広げる工夫は? キャンペーンメールの場合も、基本として要素を一つに絞り、同一期間での同時実施を心がけています。しかし、仮説を明確にするのが難しく、有意差が出にくい状況もあるため、フレームワークを活用して仮説の幅を広げる工夫を行っています。 最適仮説は何ですか? その上で、自分が実施したいキャンペーンにおいては、コンバージョン獲得のため検証すべき仮説を、フレームワークを用いて整理し書き出します。そして、どの仮説が最も効果的なのかを考慮しながらキャンペーンを実行し、結果をもとに検証と改善のサイクルを繰り返すことで成果を追求しています。

データ・アナリティクス入門

問題解決のアプローチで明確なビジョンを構築

問題解決のアプローチを学ぶ 問題解決には、「現状→あるべき姿」と「現状→ありたい姿」の二つのアプローチがあることを学びました。自分の業務に照らし合わせると、現状では大学の退学率が○○%であるのに対し、ありたい姿は退学率を0%にすることです。現状とありたい姿を明確に認識することで、分析時のブレを防ぐことができると思います。 イベントでロジックツリーをどう使う? 大学でイベントを行う機会が多くありますが、その際にロジックツリーを使用し、来場者プレゼントやイベント内容を決定するのに活用できそうです。また、このプロセスをチーム内で共有することで、決定の場面で話がスムーズに進むと感じました。 分析の透明性をどう確保する? 誰かに説明する際には、分析のフレームワークを共有し、「こういった分析を行い、こう決定した」という考えの過程を透明にすることが重要です。さらに、何か分析を行う際には、闇雲に考えずに、まず分析のフレームワーク(ロジックツリーやMECE)が活用できないかを検討することを心がけたいと思います。

データ・アナリティクス入門

効率的な資料作成で業務改善!

分析を効果的にする方法は? 分析の本質は比較にあります。具体的な要素を整理し、比較対象や基準を設けて、きちんと比較することが重要です。また、条件がそろっていない場合には想像力を働かせて補完することも必要です。 資料作成の時間短縮には? 目的を理解して分析を行うことが大切です。販売計画の部署にいる後輩たちに対して、分析の基本を踏まえたアドバイスをします。例えば、資料にグラフをたくさん載せて資料作成に時間がかかると嘆いている後輩の資料をチェックし、本来の目的は何か、仮説は何かを一つ一つ確認していくことです。 カイゼンプロジェクトの課題解決策 現在進行中のカイゼンプロジェクトでは、「資料作成に時間がかかりすぎている」「この資料作成は本当に必要か」といった課題があります。これらの問題を解決する方法の一つとして、目的をしっかり確認し、仮説を明確にしてから資料を作成するというアプローチを取り入れることが有効です。目的を明確にした上で、仮説を立て、必要な資料を作成する重要性を後輩たちに伝えることが必要です。

マーケティング入門

小さな振り返り、大きな一歩

顧客魅せのポイントは? ある事例から、顧客にどう魅せるかが重要であると学びました。イノベーションの普及条件を整理すると、以下の視点が役立ちます。まず、従来のアイデアや技術と比較してどのような優位性があるかを示す「比較優位」、日常生活における大きな変化を強要しない「適合性」、使い手にとって分かりやすく易しい「わかりやすさ」、実用的な仕様を実現できる「使用可能性」、そして新たなアイデアが周囲に観察されやすい「可視性」が挙げられます。 顧客心理はどう見える? また、製品やサービスが売れるか否かは、顧客が持つイメージに大きく左右されるため、顧客の声に真摯に耳を傾け、その心理を深く理解することが不可欠だと感じました。 タイトルの魅力は? 一方で、本社系の業務に携わっているため、企画のタイトルが固くなりがちです。ですが、企画に関わる方々がどのような影響を受け、前向きな気持ちになれるかをタイトルに反映させることが重要です。その後の浸透度合いも考慮しつつ、タイトルにもこだわっていく必要があると実感しました。

クリティカルシンキング入門

問いの核心に迫る学び

問いの本質をどう捉える? 今週の学びは、常に「イシューはどこか」「何を問われているのか」を意識し、問いの本質を捉える姿勢の重要性を再認識するものでした。問いの核を見極めれば、判断軸がぶれず、不要な作業や迷走を避けることができ、相手の期待と成果とのズレもなくなります。短い時間でも、質の高い結論にたどり着けると実感しました。 実務にどう活かす? この学びは、研修担当としての実務にも大いに活かされると感じています。研修設計や資料作成の際に「この研修で解くべきイシューは何か」「受講者や組織から何を問われているのか」を明確にすることが、内容の焦点がぶれず過不足のないプログラム作りにつながります。また、上司や関係部署からの依頼に対しても、本質を捉えたコミュニケーションを行うことで、無駄な作業や修正を減らし、効率的な対応が可能になると思います。 振り返りで何を掴む? さらに、振り返りやレビューの際にも、問われる核心を正確に把握し分析することで、改善の質が向上し、研修全体の効果を一層高められると考えました。

クリティカルシンキング入門

問い続ける力が未来を創る

考え方をどう理解する? 自分や他人の考え方に特徴があることをまず理解することがスタートラインです。その上で、正しい判断を下すためには、まず目的を明確にし、その目的に沿って問い続けることが求められます。問いを正しく続けるための枠組み、すなわちフレームワークは大切ですが、フレームワークにとらわれすぎない柔軟な思考も必要です。 顧客視点はどう捉える? 業務や顧客と向き合う際には、「相手ならどう考えるか」「顧客の状況は本当にこうなのか」「この提案は本当に効果があるのか」といったキークエスチョンを持ち続けることが重要です。また、他者からのフィードバックを受けることで、より良い相乗効果を生むことができると感じています。 提案目的は明確か? さらに、各種提案においては、まず提案資料の目的が何か、何を伝えたいのか、その情報が目的の達成に繋がるのかを常に意識することが大切です。資料が完成してから上司に提出するのではなく、骨子の段階で自身の見解を共有し、フィードバックを得た上で資料作成に入る姿勢が求められます。

データ・アナリティクス入門

数字に秘めた学びのヒント

数字選びはどうすべき? 代表値やばらつきを考慮し、適切な数字を選ぶ重要性について学びました。データには多様な側面があり、集計して表にまとめる際には、その背景となる意味を正しく理解する必要があります。 データの組み合わせは? また、他者のデータを確認する際も、各数字がどのような要素で構成されているかを意識することが大切だと感じました。たとえば、会議室の使用率や社員の出社率といった具体的な数値をデータベースでチェックし、分布図を用いて関連性を見出そうと試みた経験があります。こうすることで、新たな視点から情報を捉えることができました。 情報整理のコツは? さらに、過去の購買履歴をグラフ化するなど、複数のアプローチでデータに向き合うことで、細かい点まで確認し、本当に必要な情報を抽出するプロセスが重要だと再認識しました。まずは細かいデータを収集し、グラフ化やピボットテーブルを活用して全体像を把握し、さらにまとめられるデータは一つの図に統合することで、情報を整理しやすくすることが効果的だと感じています。

クリティカルシンキング入門

数字の秘密を読み解く冒険

数字の変化はなぜ? 数字の変化の理解には、その構成要素をどのように分解するかによって、要因が見える場合と見えない場合があることを学びました。MECE(Mutually Exclusive, Collectively Exhaustive)を常に意識しつつ、事実に基づいた正確な分析を心がけ、訓練を進めたいと思います。 保留事項はどう考える? 特定の層に対する保留の度合いを、新たな区分や詳細な粒度で分析し、要因や傾向を明確にすることを目指しています。これにより、内容によっては保留率を下げたり、不要な確認を省略でき、業務の効率化が図れると考えています。 データ分析はどう進める? 具体的には、過去5年のデータを集計し、保留理由や契約者の年齢、営業担当者の経験やエリアなどによってグループ分けを行います。さらに、各層の傾向を棒グラフで示し、変化の推移を折れ線で追い、散布図を用いて他の傾向も探っていきます。発見した傾向については、さらに要素を分けたり、分析の範囲を絞るなどの詳細な分析を行う予定です。
AIコーチング導線バナー

役職が「一般社員/職員」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right