クリティカルシンキング入門

問いが拓く企業分析の新視点

どんな問いが必要? 何かミッションが提示された際、その本質的な課題を明らかにするために、まず問いを設定し、その問いをさらに細かい項目に分ける方法が用意です。また、問いに対する答えを検討する際、引用するデータの見せ方―たとえば円グラフや棒グラフを用いるか―によって、受け手に与える印象が大きく変わることが理解できました。 どの視点で整理すべき? 私は勤務先で、関係企業ごとに企業概要、主要プロジェクト、財務諸表、決算書類などをまとめた資料の作成に取り組んでいます。今回の学びを応用し、各企業が展開するプロジェクトをどの切り口で記述するかを検討しています。具体的には、この資料が誰にどのように活用されるかを踏まえ、より多くの人にとって見やすい企業分析資料にするために、プロジェクトの実施地域や事業内容など、さまざまな切り口から情報を整理することにつなげたいと考えています。

マーケティング入門

強みを磨いて未来を拓く一歩

自分の強みは何? 私はマーケティングや営業の現場に所属しているわけではありませんが、Week1の「自分をどう売り込むか」という演習と今回の学びには共通するところを感じました。忙しい日々の中で黙々と働くことが多いですが、一度立ち止まり、これまでのスキルを洗い出し、自分の強みがどのような人々に響くのかを整理する時間の大切さを実感しました。 他分野でどう活かす? 長い間同じ業界に所属していると、その業界が唯一の選択肢だと考えがちですが、今回の学びをきっかけに、他の分野でも自身の経験が活かせる可能性について考えるようになりました。何もしなければ、結果として自己のキャリアにおいて機会損失を招くのではないかと危惧しています。 成功事例は何? 個人のキャリアはもちろん、企業全体で今回のような発想の転換により大きく好転した成功事例があれば、ぜひ教えていただきたいです。

データ・アナリティクス入門

数値で見抜く!漏れゼロの採用戦略

どの段階で離脱? ファネル分析を通して、どの段階で対象が離脱しているかを可視化できるため、問題点を明確に捉えることができると感じました。ただ単に結果を眺めるのではなく、途中段階で状況を確認し、各プロセスを適切に設定することが重要だと思います。 採用選定のポイントは? また、採用活動においては、採用エージェントや採用プラットフォームの選定に活用できる点が印象的でした。まず、人材会社のユーザー数、直近3カ月以内のアクティブ数、採用職種の登録人数、採用希望年代など、段階的に絞り込むことで、対象となる母数の大きさを把握する手法が有効だと感じました。 母数比較で選定は? さらに、それぞれの採用エージェントやプラットフォームを運営する企業ごとに同様の絞り込みを行い、母数を比較することで、採用活動に最も適した人材会社を選択できると実感しました。

データ・アナリティクス入門

見えない価値を探る学びの場

目に見えぬリスクを感じる? 既に目に見える情報だけでなく、目に見えない要素にも着目する大切さを学びました。たとえば、帰還していない飛行機の状況を考えることで、現状からだけではなく、潜在的なリスクや可能性についても想像する力が養われると感じました。また、出版される経営に関する本は、その裏付けとして成功しているという実績があることに共感を覚えました。 数字に秘めた戦略は? 一方、私の業務は既存のデータをまとめ、数字や報告資料に反映させるという作業が中心です。そのため、現時点ではこの学びが直接的に業務に活かせるとは感じられていません。しかし、今後、毎月提出する経営会議用の資料に予測や分析を加えることで、より深い洞察が業務の判断材料になり得ると考えています。特に、条件を比較しながら推測を行うことで、より実践的な分析が可能になると期待しています。

クリティカルシンキング入門

ライブ授業で得た問いの術

問いのマトリックスは? ライブ授業で教わった問いのマトリックスが非常に印象に残りました。左右に原因と打ち手、上下に抽象的なものと具体的なものが配置されており、とても分かりやすい構造です。良い問いを考えるためには、①状況を見る、②原因に着目する、③問いを残すという視点が重要だと理解しました。この学びは大変意義深いものでした。 組織と業務の課題は? 具体的な行動①として、現状、自社の組織構成と業務フローの適合性に課題を感じています。まずは状況を整理し、筋の通った問いの検討から取り組んでいきたいと考えています。 システム入替えの負荷は? 具体的な行動②では、システムの入れ替えが予定されているため、社員にできるだけ負荷がかからない方法を模索しています。こちらも、まずは現状の整理と問いの組み立てから進めていく予定です。

データ・アナリティクス入門

平均の壁を超える新たな挑戦

分析プロセスとは? 「分析のプロセス」について、まず目的を明確にし、仮説を立て、次にデータを収集し、最後にその仮説を検証するという一連の流れが紹介されました。代表値として、単純平均、加重平均、幾何平均、中央値が挙げられており、各手法を用いることでデータの中心をどこに置くかを判断します。一方、標準偏差を用いた散らばりの分析は、データがどのように分布しているかを把握する上で不可欠だと理解しました。 手法選びはどう? 実務では、これまで単純平均を頻繁に使用していましたが、その結果としてデータのばらつきを捉えられず、正確な分析が難しいと感じていました。今回の学びを通じて、加重平均や中央値など、状況に応じた手法の選択と活用が重要であることに気づきました。今後は、各手法の特性を考慮しながらデータ分析に取り組んでいく所存です。

リーダーシップ・キャリアビジョン入門

対話で見つける成長のヒント

評価フィードバックはどう? 面談の場で評価をフィードバックする際、単に課題点や悪い評価だけに焦点を当てるのではなく、受け手が実際に行った努力や良い点も十分に評価することの重要性を学びました。評価される側は、努力や成果があるはずですので、良い点を取り上げながら課題も指摘することで、全体としての納得感が生まれやすくなります。 部下との対話は必要? この考え方は、実際に部下とのフィードバック面談でも大いに役立つと感じています。一方的に課題点を指摘するのではなく、まず部下の意見を引き出し、その対話の中で自分自身が課題に気づくきっかけを作ります。また、悪い点だけでなく良い点もしっかりと伝えることで、ただの指摘ではなく、共に改善策を考えていくプロセスが自然と促されるようになり、双方にとって有意義な面談となると確信しています。

戦略思考入門

取捨選択で進む未来への一歩

不要なものは捨てる? ビジネスの効用を最大化するためには、不要なものを取り除くことが不可欠です。何を捨てるかを判断する際、時間配分や広告宣伝などへの投資対効果が一つの基準となります。また、トレードオフが生じた場合には、より重視すべき要素に資源を集中させることが求められます。両方に手を出してしまうと、中途半端な結果に終わるリスクがあります。 情報取捨はどうする? 私は勤務先で企業情報の分析と、取りまとめ資料の作成を担当しています。資料には、対象企業が持つ資源プロジェクトの情報を記載する欄がありますが、企業によっては取組むプロジェクトの数が多く、記載すべき情報が溢れてしまうことがしばしばあります。そこで、まずは資料の使用者が重視する要素を見極め、周囲と相談しながら必要性の低い情報を捨てる判断を心がけています。

クリティカルシンキング入門

情報を分解!部署活性化のヒント

データ加工の意義は? データは、一次データそのままに頼るのではなく、加工や分解を通じて活用するべきです。加工することで、異なる事象の違いがより明確に見えるようになり、視覚的に理解しやすくなります。また、一度の分解に留まらず、MECEなどの手法を使って多面的に分析することが求められます。 現場の情報提供は? 私の勤務先では、関係企業に関する情報を収集し、社内へ提供する業務を担当しています。これらの情報が、実際にどの部署でどのように活用されているのかを分解して分析してみたいと考えています。たとえば、全体の部署の中でどの程度の部署が利用しているのか、また意思決定者や実務者など、どの層の関係者が関わっているのか、さらには情報の粒度についてまで、具体的に検証してみる必要があると感じています。

データ・アナリティクス入門

フレーム活用で広がる分析の新視点

授業で何が学べた? ライブ授業では、分析のプロセスを体系的に学びました。複数の仮説を立て、それを検証することで問題解決に取り組む手法が非常に効果的であると実感しました。また、事象を考察する際には、フレームワークの意識が基礎となる重要なスキルであることを学び、これを身につけたいと感じました。 今後の戦略は? 今後は、分析ツールを利用する際にも、フレームワークを大切にしながらアプローチしていきたいと思います。普段から現場の社員にヒアリングを行い、データの内容や背景を深く理解することで、より具体的かつ有用な分析ができるよう努めます。 成果をどう伝える? その上で、収集したデータを効果的に可視化し、社内のメンバーにわかりやすく説明できるよう、引き続き努力していきたいと考えています。

クリティカルシンキング入門

数字の切り口で拓く学びの扉

データの切り口は? 数字やデータに意味を持たせるには、まず複数の切り口から考察することが重要だと学びました。どの切り口を採用するかで迷うよりも、まずはデータを分けてみることの大切さを実感しました。 全体像はどう組み立てる? また、分け方をする際は全体像を意識し、MECEの原則に則ってダブりなく網羅的に整理する必要があると認識しました。この考え方は、他社の財務数値や事業の分析にも十分に活用できると感じています。 数値変動の真意は? さらに、財務数値の変動を分析する際は、単に売上や利益の増減を追うのではなく、事業ごとの売上の変化や費目ごとの増減など、より細分化して捉えることの重要性を再確認しました。今後は、より一層細かい視点での分析を心掛けていきたいと思います。

データ・アナリティクス入門

仮説検証で磨く伝わる分析術

どんな学びがあった? 今回の学習を通じて、自分の不足点や修正すべき点を改めて確認することができました。 仮説検証は十分? まず、仮説を検証する過程で、データの取得や加工は行ってきたものの、否定的な視点からその仮説が正しいかどうかを十分に検証する必要があると感じました。次に、分析時には適切なフレームワークの活用が重要であると再認識しました。さらに、結論をまとめた際、相手に正しく情報を伝えるために、グラフなどの視覚資料の選び方や説明の仕方が大きく影響することも学びました。 改善に向けて何? これらの学びを生かし、今後は自己の課題や修正点に注意しながら、分析や報告の方法を工夫していくことで、上司の理解や納得を得られる報告資料を作成していきたいと考えています。
AIコーチング導線バナー

職種が「経理・財務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right