戦略思考入門

「限界突破!効率的に学ぶ秘訣」

リソースの活かし方は? 限られたリソースで最大の効果を上げるためには、やらないことを見極めることが重要です。これは、シルクドソレイユの事例からもわかるように、ROIを最大化するだけでなく、差別化にも貢献していると感じました。見極める際には、様々な視点から判断項目と基準を考えることが必要です。また、そもそもやらなくて良いことに気づかないこともあります。昔からの惰性や、常識、当たり前と思っていたことに対して、批判的に見る姿勢が求められます。人の行動や思考には慣性があるため、やめることには勇気が必要です。 仕事の仕分け方法は? 普段の仕事では、限られた勤務時間内で多くのタスクをこなす必要があります。しかし、やるべきこととやらないことを明確に仕分けていませんでした。今回の学びを活かし、自分の仕事の仕分けから始めたいと思います。 やらないものはどうする? やらなくて良いこととして、完全に仕事を止めて捨てる場合と、仕事は続けるが優先順位を下げて後でやる、完成度を下げる、もしくは他の力を借りるといった場合が考えられます。自分がやるべきこと、やらないことを仕分けた後には、やらないものに対してどのように対応するのがベストなのかも考えたいと思います。

戦略思考入門

経営戦略の楽しさを実感する日々

基本戦略の3つとは? 基本戦略は以下の3つに大別されます。 1. コストリーダーシップ戦略 2. 差別化戦略 3. 集中戦略 これらの戦略にはいずれもリスクが伴い、永続性はありません。そのため、常に環境変化に応じて戦略を臨機応変に見直す必要があります。 VRIO分析の重要性とは? また、戦略を選択する際や評価する際にはVRIO分析が有効です。VRIO分析を通じて、より競争優位な施策を見つけることができます。 事業計画にポーターをどう活用? 具体的な事業計画を策定する際には、ポーターの基本戦略の考え方をラフに適用して方向性を検討します。複数の施策を考え、それらをVRIO分析によって評価し、自社にとって競争優位な施策を選択します。その前段階として、3C+@の事業環境分析を行い、外部および内部環境を詳細に分析します。 学んだことを実践でどう活かす? 学んだ内容を愚直に実行することが重要です。たとえば、week2で学んだ事業環境分析から始まる一連の流れを用いて、特定の企業のケース問題で実践しました。その過程で自分の強みや弱みを把握し、理解が不足している部分を再度復習しました。このサイクルを繰り返すことで、知識の習得を目指しました。

デザイン思考入門

ユーザーの声で開く新たな可能性

フィードバックの意義は? ユーザーやメンバーからのフィードバックが、製品やサービスのブラッシュアップに大いに寄与し、ひいては新たなアイデアの創出に繋がるという点が非常に印象的でした。現状では、製品開発において構造や機能の検証は行われるものの、人間中心の視点でユーザーの共感や意見を十分に取り入れる場面が少なく、チームで意見交換を行うことが新たな開発のヒントとなると感じました。 SCAMPER法の効果は? また、SCAMPER法の7つの視点を実際に活用することで、その効果が実感できるという点も参考になりました。さらに、初めて知ったストーリーボードは、ユーザーの価値ある体験を物語形式で視覚化する手法として理解が深まり、大変有益でした。 ペルソナ設定はどう? この学びを通じて、エンドユーザーを具体的にイメージするためにペルソナを明確に設定すること、そしてエンドユーザーにとっての価値(バリュープロポジション)を中心に考えることの重要性を再認識しました。加えて、開発チーム内でSCAMPER法やダブルダイヤモンドの手法を取り入れ、ユーザーからのフィードバックを効果的に得られる仕組みを構築することが、今後の製品開発に大いに役立つと感じました。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

リーダーシップ・キャリアビジョン入門

フィードバックで変わる自分と未来

フィードバック目標はどうする? フィードバックを行う際には、体系立てた考え方が重要です。まず、「フィードバック後にはどうなっていて欲しいのか」という目標を持ち、その場の雰囲気や相手の反応に合わせて柔軟に対応することが求められます。そのためには、日常的なコミュニケーションを通じて相手の人柄を理解しておくことが不可欠です。 事実と感情はどう分ける? また、フィードバックをする際には事実やその根拠を述べるだけでなく、相手の気持ちに配慮することも重要です。具体的には、フィードバックを受ける人の実績などを報告する際、事実と自分の感情を区別して伝え、偏見を避けるようにします。さらに、フィードバックの前に自分自身が相手に対して適切なフォローを行えているか自己評価を行った上で、フィードバックをするように心がけます。 環境づくりのポイントは? 加えて、事実や自分の考えを伝えるだけでなく、相手が話しやすい環境づくりと、そのための日常的なコミュニケーションの取り組みも重要です。ネガティブな内容を伝える場合でも、相手の成長や改善につながるための「ポジティブな思い」で伝えていることを意識し、フィードバックを受ける際にはその意図を汲み取ることが大切です。

マーケティング入門

学びが変える、私の未来への一歩

セグメントの選び方は? セグメンテーションでは、サービスに合わせて、人口動態、心理的、地理的、行動といった各変数の切り口から、自社商品の特性に適合したものを選定します。 ターゲットの絞り込みは? 次にターゲティングについては、評価基準となる6R―市場規模(Realistic Scale)、成長性(Rate of Growth)、競合状況(Rival)、優先順位(Rank)、到達可能性(Reach)、反応の測定性(Response)―をもとに、勝ち残る可能性が高いターゲットを絞り込むことが重要です。 ポジションマップは? また、ポジショニングでは、2軸によるポジショニングマップを策定します。この際、まず自社製品の特長を洗い出し、その上で顧客ニーズに訴求するポイントや表現、さらに競合との差別化が明確になる要素を軸として選びます。 差別化のポイントは? さらに、自社が提供するサービスは複数の競合他社と市場を争うため、市場調査や既存顧客から得られる情報を活用し、他社と差別化できるポイントを洗い出すことが求められます。展示会で抽出した要点をもとに、訪問者にわかりやすく伝えられるよう心掛けて会話を進めていきたいと考えています。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

選ぶ力が分析を変える

手法選択は何が肝心? 様々なアプローチからデータを検討することで、仮説の精度が向上することを実感しました。しかし、すべての手法を無差別に試すのは非効率であり、分析の目的に沿った適切なアプローチを選ぶことで効率よく進めることが大切です。 代表値の選び方はどう? また、代表値には多くの選択肢が存在するため、データの性質や分析目的に応じた計算方法を選ぶ必要があります。一定の経験を重ねれば、どの代表値が最適かパターンを把握しやすくなると思います。 グラフ選びはどう判断? 製品の計測データなどを分析する際は、適切な代表値を選ぶことに加えて、標準偏差も併せて算出することが求められます。レポートを作成する際には、分析目的とデータの特性を踏まえて適切なグラフを用い、他者の手法に対しても改善の余地がないか検討する姿勢が大切です。 再検討の意義は何? これまで、代表値として単純な相加平均に頼ることが多かったため、今後はデータの性質を再検討し、その選択が本当に妥当なのかを吟味するようにしたいと考えています。また、グラフの選定についても感覚に頼るのではなく、目的を明確にした上で最適な可視化方法を選ぶよう努めます。

マーケティング入門

顧客志向で見つける新たな道

顧客志向ってどう捉える? マーケティングの学びでは、顧客志向の考え方に大変参考になる点が多く、マーケティングという言葉の定義が人によって異なるため、社内での認識共有の大切さを改めて実感しました。 変化をどう見る? また、講習中にある方のコメントで「自社のサービスを通して顧客にどう変化してほしいのか」という視点が示され、その意見に新たな気づきを得ることができました。これまで私は、サービスや商品がどのように受け入れられるかという点だけに注目していたため、顧客の変化も視野に入れる考え方は非常に刺激的でした。 実践のヒントは? 自社製のサービスを新規検討する際や商談時に、本講習の内容を活用していきたいと思います。ただし、具体的にどのように適用できるかはまだイメージが固まっていません。その中でも、まずは「顧客志向」というキーワードを念頭に、相手のニーズをしっかり把握する姿勢を実践していきたいと考えています。 他業種との対話は? 私の業種は自社製品の普及を目的としていないため、一層、マーケティングや営業、さらには他業種の方々との意見交換を通じて、それぞれの課題に対するアプローチを学んでいけたらと期待しています。

アカウンティング入門

経年分析で見つける自社の課題

資産と負債をどう分析する? 資産と負債のそれぞれを、流動・固定という観点から見て、また純資産とのバランスが取れているかを確認したいと思います。経年でこのバランスに変化がないかを確認することで、全体の状況を把握し、その後に個々の数字を分析していきたいです。また、業界ごとのバランスの違いも確認し、それが提供価値と一致しているかを見極めることも重要です。 経年分析で何を見通せる? 自社のバランスシートを経年で分析し、現在の状況をしっかりと把握したいと思います。特に、資金の使途を理解することで、自社の経営方針における課題を見つけ出したいです。たとえば、固定資産の比率を減らすには投資計画を見直すことなど、具体的な数字に基づいて考えたいです。また、競合他社との比較を通じて浮かび上がる課題も考慮し、分析の切り口を広げたいと思います。 競合比較で見える課題とは? さらに、自社と競合他社のバランスシートを経年で比較し、傾向に違いがないかを確認したいです。我々の業界では、固定資産の割合が大きいことが特徴であるため、中期の投資計画の必要性やその経営方針との一致について論理的に説明できるよう、理解を深めたいと考えています。

デザイン思考入門

デザイン思考で切り拓く設計の未来

顧客価値はどう考える? 新規事業を進める上で、まず重要なのは顧客について考えることです。すなわち、顧客は誰でどこにいるのか、また顧客が抱える困りごとや喜びは何かを明確にし、顧客の価値を最大化することが求められます。デザイン思考とは、こうした問題の所在や本質を明らかにするために、ユーザーを観察し共感することで、潜在的な問題を浮き彫りにし解決策を見出す手法です。協働と共感を出発点とし、課題の定義、さまざまな発想、試作、テストといったプロセスを経ることがその特徴です。 新発想はどう発揮する? 私は搬送機械の機械設計に携わっており、斬新な発想を持つ機械が増えている現状の中で、新製品開発にデザイン思考を役立てたいと考えています。購入を決定する人や実際に使用する人の視点に立って共感し、本質を見極めることが、新たな製品開発のヒントにつながると感じています。 理解をどう深める? まずは、デザイン思考の理解を約1.5か月で深めることを目標にしています。各週で学んだ内容をすぐに実践し、確実に知識として定着させたいと考えています。今までの考え方に加え、常にデザイン思考を意識しながら、設計開発業務に取り組んでいきます。

データ・アナリティクス入門

見方ひとつで変わるデータの魅力

定量と定性はどう違う? 曖昧な依頼は何が問題? 定量データと定性データは、普段何気なく扱うものですが、実際には全く異なる情報だと実感しました。データ分析を進める際、曖昧な依頼で「とりあえずざっくりで」と指示してしまうことがよくあります。しかし、授業を通じて、何を知りたいのか、何を明確にする必要があるのかをあらかじめ仮説として立て、分析を進める重要性を再認識しました。 顧客情報はどう読む? 市場の声を捉えている? また、日常的に目にする商品開発や研究での顧客情報、市場ニーズといったデータも、単に眺めるだけでは業務に活かしきれていません。これからは、得られた情報から今後の方針を明確にし、必要な開発や提案に結びつける取り組みを進めていきたいと考えています。 グラフ化は何を示す? 話し合いはどんな効果? 普段の情報をただ見るのではなく、グラフ化するなどして多角的にデータを俯瞰し、チームメンバーとのディスカッションの機会を設けることが必要だと感じました。データ分析の楽しさや、他者へ説明し理解してもらえることで生まれる信頼関係も、業務を円滑に進めるための大切な要素だと実感しています。

職種が「技術職(機械・自動車)」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right