データ・アナリティクス入門

アウトプットが照らす分析の道

データ収集時の注意点は? データ収集の段階で、最終的なアウトプットのイメージを明確に持つことが非常に大切だと改めて実感しました。演習を通じ、ただ漠然とデータを分析するのではなく、何を理解したいのか、どのような知見が得られるのかを意識しながら分析する必要があると感じています。 仮説の重要性は? これまでは業務上、データを加工して気になる情報が見つかればその伝え方を考えるという流れで進めていたため、分析を行う際には、まず仮説とアウトプットのイメージを持つことが質の向上に大きな差を生むのだと実感しました。 質向上への取り組みは? この経験をもとに、売上の変動分析においても、従来の手当たり次第の手法から脱却し、しっかりとしたアウトプットのイメージを持って取り組んでいきたいと考えています。また、以前「分析がわかりにくい」という指摘を受けたこともあり、優れた分析手法を取り入れることで、さらなる質の向上を目指します。

データ・アナリティクス入門

ロジックツリーで見える課題発見の魅力

問題点発見の方法は? R&D開発部門のPoCやクロスセル・アップセル立案において、問題点を発見するためにロジックツリーを用いてプロセスを分け、その後にファネル分析を使って視覚的に問題点を可視化することができると感じました。このようにプロセスを独自に設定することで、より具体的な分析が可能になります。 顧客行動はどう見る? また、マーケティングや製品提案の際にAMTULの観点を取り入れることも有益だと思いました。具体的には、以下のような質問を通じて、顧客が購買に至るプロセスでの課題を見つけ出すことができます。 - 記憶に残るポイントは何か? - いくらなら試用したいと思うか? - 本格的な使用に至るための要件は? - 継続して使用する可能性があるか? これらの質問を通じて、顧客の意識から忠誠度に至るまでのステップに関する洞察を得ることができ、その結果、より効果的なマーケティング戦略を立てることが可能になるでしょう。

データ・アナリティクス入門

データ分析で差を生み出す4つの秘訣

顧客分析で何を重視する? 顧客分析や市場分析を行う際、まず「分析とは比較すること」であり、目標と仮説をきちんと立てることが重要だと学びました。定性的な分析に偏りがちで説得力を欠くことがあるため、尺度や数値の性質を正しく理解して、しっかりと分析・評価・考察を行いたいと思います。 他社比較で成功するには? 今後、様々な施策を行う時に他社比較やABテストを実施する機会があると思われますが、その際には、「比較」「目的」「仮説」「考察」を確実に具現化してから各数値の分析・評価を行うことに努めたいと考えています。メンバーや上層部にも十分な納得感を持って進められるようにしたいです。 数値分析の心構えは? そこで、まずは様々な数値を扱う際に「比較対象の妥当性」「目的」「仮説」「考察」の4つを常に念頭に置いて仕事に取り掛かるよう心がけています。また、分析方法についても数値の性質を見極めつつ、適切に分析・評価を行いたいと考えています。

マーケティング入門

顧客理解を深め、次の一手を見つける学び

顧客ニーズをどう捉える? 過去の事例を深く考え、「ジャニー」に沿って顧客ニーズの捉え方や満たし方、競合の観点を順を追って理解できました。また、今週の事例を通じて、事前に考えていたことと回答の差から、自分自身の思考や考え方の癖を知ることができました。 既存ビジネスの観点整理はどのように? 既存ビジネスにおける観点の整理も進みました。新ブランドに限らず、既存ブランドでも顧客ニーズを満たすコアバリューとは何か、顧客に何を伝達すべきかについて、整理の仕方と伝え方の順序を正しい顧客の見出しに活用できると考えます。 SNSでの価値伝達はどう進める? さらに、SNSを通じた顧客への価値伝達シーンでは、デジタルトランスフォーメーション(DX)の活用により、正しい顧客を見出し、顧客のペイン(問題点)を解消し、顧客に対する価値(GAIN)をどのように伝達するかの次のフェーズへの基礎を、思考のフレームを元に実行可能だと感じました。

マーケティング入門

視点が拓く明日の可能性

多角的視点って何? この講座で学んだことは、物事を多角的に捉える視点の重要性です。さまざまな角度から見ることで新しい視点と発想が生まれ、柔軟な発想を維持することができるという点に大きな気づきを得ました。 顧客の本音は何? また、単に素晴らしいものを作るのではなく、顧客が本当に求めている「いいもの」を考え、売れない理由についても検討することが、より良いサービス提供につながると実感しています。 競合とどう対抗する? さらに、他社の商品や広告を通してターゲットや伝えたい内容を分析する手法は、マーケティングの視点を向上させるための大切なスキルであると感じました。競合との差別化にとらわれず、幅広い視野を持つことで、より実践的な分析力が身についたと思います。 学び続ける意義は? 最後に、常に学び続ける姿勢の重要性を改めて認識し、今後も多面的な視点を活かしながら自身の成長に努めていきたいと感じています。

戦略思考入門

不要なものを捨て、本質を掴む

判断軸はどう整える? 「捨てる」力を身につけるためには、思考を停止させることなく、常に現状の最適解を意識することが大切だと学びました。業務の中で優先順位を考える場面は数多くありますが、投資や時間に対する費用対効果の視点をしっかりと取り入れ、自分自身の判断の軸を築いておくことが重要です。そして、その判断軸を周囲にわかりやすく整理して伝えることで、納得を得ながら業務を推進できると感じています。 本当に必要な報告は? また、定例ミーティングや定期報告、報告資料の中で不要なページや内容が含まれていないかという視点を常に持ち、業務の中に存在する「実は省略しても良い内容」がないかをチェックすることも意識しています。そもそもその業務や内容は、誰のために何のために行われているのかを5W1Hの視点で見直し、現状と照らし合わせながら本当に必要なものかどうかを判断しています。不要と判断した内容は、その旨を速やかに提案するように努めています。

データ・アナリティクス入門

仮説から始まる発見の物語

なぜ振り返りするの? これまでの学びを総まとめする中で、問題解決のステップと仮説志向の重要性を再認識しました。一見当たり前に感じることも、改めて意識することで新たな発見があると実感しています。また、他の受講生の意見に触れることで、自分のアプローチに不足している部分を確認することができました。 有意な検証方法は? もともとの課題として、A/Bテストにおいて有意差が出る仮説を立案する必要があるため、「要素は一つ」「同じ期間で同時に」という基本に加え、仮説を明確にすることを意識したいと考えています。そのため、フレームワークを活用して仮説の幅を広げる取り組みも進めています。 効果的な施策は? さらに、自分が実施するキャンペーンにおいて、コンバージョン向上のために検証すべき仮説をフレームワークを使って洗い出し、その中で最も効果が見込める仮説をもとにキャンペーンを実行・検証するサイクルを繰り返していくことが今後の課題です。

マーケティング入門

顧客視点の再評価が生む新風

ターゲット再検証は? 商品のターゲットを見直すことで、新たな価値が生まれる可能性を学びました。特に、心理的変数は時代とともに変化するため、価値を再評価する上で有効な切り口であると実感しました。 マップの違いは? また、ポジショニングマップとパーセプションマップの違いについて理解を深め、顧客目線がいかに大切かを再認識することができました。 事業見直しはどう? 自社の事業を振り返る際は、まず特徴を洗い出して訴求ポイントを整理することから始めました。その上で、どこにポジショニングを置くべきか検討し、注力している事業に問題がないかを確認しています。さらに、顧客へのヒアリングを通じて、自社の伝えたいポジションがしっかり伝わっているかどうかをチェックしていきます。 システムに期待は? また、時間に余裕があれば、システム会社に対してどのような期待を持っているのか、直接伺ってみたいと考えています。

マーケティング入門

論理で読み解く市場の真実

どう学ぶべき? セグメンテーション、ターゲティング、さらにターゲティングの評価基準である6Rを学んだことで、これまで感覚的に捉えていた要素を論理的に整理でき、理解が一層深まりました。 どう分析する? 実際のビジネス現場では、すでにこれらのフレームワークを取り入れている場合が多いと感じますが、新製品の投入や期待した成果が得られていない場面では、改めて基本に立ち返ることで状況を正しく分析できると実感しました。 市場はどんな? また、外資系IT製品の取り扱いに関する経験を通じて、本国で成功している製品であっても、他国や日本市場で展開する際は市場特性を再検討する必要があると改めて認識しました。市場ごとの違いを正確に把握し、それに合わせた戦略を取ることの重要性を感じました。 次に向かう意欲は? 今後は、これらの学びを自らの業務に生かし、市場ごとの特性を十分に理解する視点から再評価を進めていきたいと思います。

データ・アナリティクス入門

自分を動かす学びの羅針盤

全体像はどう把握? これまで学んだ分析についての総括を通して、その全体像を把握することができました。特に、今後取り組むべき内容が整理され、自分が実践すべき具体的なアクションが明確になったと感じています。引き続き学びを継続する重要性も再認識しました。 分析はなぜ必須? また、業務の基本として「分析」を位置づけ、あらゆる場面でデータ分析が必要であることを意識するようになりました。同時に、「仮説思考」がデータ分析だけでなく、全ての施策を検討する際に欠かせない考え方であることを実感し、今後も意識的に取り入れていきたいと考えています。 実践をどう積む? さらに、小規模な事例を通じた実践を重ねることで、現場でのデータ分析の経験を着実に積み上げていくことが求められると感じました。今回学んだ知識を、自分なりに職場のメンバーにフィードバックする機会を設けることで、他者に伝えられるレベルまで理解を深めていきたいと思います。

データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

数値で見える問題解決の道

現状とあるべき姿は? 問題解決の最初のステップとして、現状とあるべき姿を定量的に示すことの重要性を再認識しました。合わせて、ロジックツリーやMECEの考え方についても学び、特にMECEの「モレなく、かぶりなく」という定義がどのように要素全体をカバーするかという点で理解が深まりました。 議論の糸口は? チームで問題解決のアイデア出しを行う際には、ロジックツリーを活用してミーティングを進める方法が有効だと感じています。また、議論の中でMECEを意識することで、問題解決への多様なアプローチが見つかると実感しました。 数値で示す理由は? さらに、根本的な解決のためには、まずチーム全体で現状とあるべき姿を数値的に明確に示すことが不可欠だと感じています。今後は、初心に立ち返りこの点について改めて話し合い、ブレインストーミングなどの会議でもロジックツリーを活用して、より論理的な結論へ導いていきたいと思います。

職種が「マーケティング(企画・調査・分析・広報)」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right