リーダーシップ・キャリアビジョン入門

リーダーは自己理解で開花する

自己理解はどう深める? 今回学んだ中で最も印象的だったのは、「リーダーとしての行動を磨くためには、同時に自己理解を深めることが不可欠である」という考え方です。組織やチームは「人次第、リーダー次第」と言われる背景がよく理解できました。 キャリア軸はどう捉える? また、キャリア・アンカーやキャリア・サバイバルの考え方についても、改めて自問自答し、自己内省する重要性を感じました。キャリア・アンカーと職業を直接結びつけるのではなく、キャリア・サバイバルを通じて、組織が自分に求めることを理解することが、仕事における大切な軸になると実感しました。今後も時間をかけてしっかりと理解を深めていきたいと思います。 価値観はどう共有する? この学びは、チームのスタッフとも共有し、次回の研修やミーティングでワークとして取り組む予定です。特に中堅スタッフには強く響く内容で、それぞれが自分の貢献や組織内で求めることについて考える良い機会になるでしょう。一方、自分が本当にやりたいことと異なる方向へ進んでしまわないよう、キャリア・アンカーやキャリア・サバイバルの考え方を正しく伝える必要性も感じています。各スタッフの価値観を知ることで、より良いキャリア形成のサポートができればと思います。 意見はどう吸収する? まずは自分自身と向き合い、自己理解をさらに深めるために、他者から意見を聞いたり、話を聴いたりする機会を増やしたいと思います。そして、キャリア・アンカーやキャリア・サバイバルの考え方を仕事だけでなく、人生の軸としてもしっかりと考えていきたいと感じました。

データ・アナリティクス入門

多角的発想で拓く学びの扉

仮説の立て方は? 仮説を立てる際には、複数の仮説を提示し、網羅性を意識することが大切です。3Cや4Pといったフレームワークを活用すると、仮説を立てやすくなることを実感しました。また、単に考えただけでなく、様々な切り口からアプローチするよう努めることが重要だと感じました。 データ選びはどう? データ収集については、誰にどのように聞くかが非常に大切です。自分に都合の良いデータだけでなく、反対の意見となる情報も収集するよう心掛けています。一見、目の前にある情報だけで判断せず、目的に沿ったデータであるかどうかを考える重要性を改めて感じました。実際、抽出したデータで本当に検証したい内容が導き出せるかを、常に見直す必要があると考えています。 サービスはどう伝わる? 新しい運用やシステムの活用状況、また提供しているサービスがどのようにお客様に届いているかを分析する際は、まず言葉で仮説を立てることに取り組んでいます。これまで、数値を見ただけで直感的に考え、その立証に必要なデータをどう抽出するか検討していましたが、目的に合致しているのか不安に感じることもありました。そのため、自分にとって都合の良いデータだけに偏らないよう、改めて意識しています。 生産性向上はどう? また、社内の生産性向上施策が実際に効果を上げているかを検証する際にも、フレームワークを用いて複数の仮説を立て、網羅的に検討することを意識しています。抽出したデータが目的に沿っているかを確認した上で、そこからどのような結論が導けるのかをしっかり検証することが重要だと感じました。

マーケティング入門

顧客の心に響く伝え方の勉強中

セグメンテーションとターゲティングをどう活用する? セグメンテーションとターゲティングの重要性について深く理解しました。当初の設定とは異なる層にアプローチが成功する場合もあり、状況の変化に応じて他の層へのプロモーションや再評価が必要です。このように、広い視野と柔軟な発想が常に求められると実感しました。 訴求ポイントをどう絞る? 「誰に売るか」だけでなく、「どのように伝えるか」についても、適切な切り口や方法を確認することが重要です。また、以下の要点を学びました: 1. 訴求ポイントは2つまでに絞る(欲張りすぎると伝わりにくくなる)。 2. 顧客の共感を得て、伝わりやすい表現を選ぶ。 3. 競合との差を明確にし、差別化の軸を考える。 自部署の強みをどう再評価する? 私の部署はバックオフィス業務の集約化が主な役割ですが、業務の移管元である営業店や間接部署も顧客として重要です。顧客の認識を深めることで、部署の価値や重要性をさらに高めることが必要です。そのために、自部署の強みや特徴を再評価し、セグメンテーションとターゲティングを見直すことで、費用対効果の高い移管領域を特定できると考えています。 STP分析スキルをどう活かす? 現時点で私が担当する業務は、サービスを社外に提供している旅館施設に関連しています。ここで施設周りの分析や戦略策定を行う際に、学んだSTP分析のスキルを活用してさらに理解を深めていきます。また、部署の強みを再確認し、適切な切り口や選び方を考え続けることが、資料作成や新しい提案に役立つと感じています。

データ・アナリティクス入門

ファネル分析で見える改善の鍵

ファネル分析はどう? 問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。 募集プロセスはどう? 生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。 事例調査はどう? 具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。

リーダーシップ・キャリアビジョン入門

キャリア戦略で希望を描く

キャリア戦略は十分か? 自分のキャリア形成において、これまで「キャリア・サバイバル」(職務と役割の戦略的プランニング)の視点を持っていなかったと感じています。転職を重ねる中で、常に自分の仕事の棚卸を行い、変化する市場の中でどのように自分の価値を発揮できるかを模索してきました。新たなチャレンジを通じて自身の価値を磨く流れは続いているものの、戦略性という点では十分ではなかったのではないかと思います。また、キャリアに真摯に向き合い、その姿勢を表すことで、メンバーからの信頼やリーダーシップの向上にもつながると感じています。 目標策定はどう進む? 期初の個人目標を策定する際には、目の前の役割に対する目標に加え、自身のキャリアや人生の目標にも言及し、それをメンバーに共有したいと考えるようになりました。自己開示が奨励される文化の中で、1on1や定期的な振り返りの中で、自分自身やメンバーのキャリアアンカーについて意見交換することが有意義だと思います。 今後のキャリアはどうなる? 最近では、年齢を重ねるにつれて、今この組織や事業に必要なことに集中し実行する傾向が強くなりました。しかし、今一度、キャリアアンカーを意識し、キャリア・サバイバル戦略を描くことで、これからのキャリア形成にさらなる期待や希望を持てるのではと感じています。キャリアアンカーを理解することは、自分だけでなく周囲との協働や仕事の時間をより意義深いものにしてくれると考えるため、職場のメンバーや友人、先輩・後輩といったさまざまな立場の人々と、率直な対話を進めていきたいと思います。

クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

クリティカルシンキング入門

批判的思考で偏りを乗り越える学び

なぜ自分を見つめ直すの? 思考には偏りが生じやすいため、他者との会話を通じてその偏りを克服し、自身の気づきを増やすことが重要です。自分自身を批判的に見る習慣をつけることで、偏りを少しでも解消し、気づきを増やすことが求められます。そのためには、常に「なぜ?」「本当に?」と問いかける姿勢を持ち続けたいと思います。 経験は何を教えてくれる? 私の経験では、数値を用いた口頭や資料での説明が多かったため、自分で書いた文章をチェックする習慣がありませんでした。しかし、相手の立場になって考えることで、サボらないよう心がける必要があります。また、情報を視覚化する際には、過剰に図や表、グラフを使用してしまう傾向があったと反省しています。相手が情報を探さずに済むよう、シンプルで意図を持った視覚化を意識したいです。 本当に他はあるの? 上司や部下に対する説明や説得、財務諸表の作成、プロジェクト起案、日々のメールコミュニケーションにおいて、課題への対策が過去の経験に依存しがちなため、「他にないか?」と批判的思考を忘れず問い続けることが大切です。 問題を適切に課題へと変換し、課題への打ち手を決める際には「もっと他にはないか?」と自問できるようになることが目標です。また、ゼロから一を創り出す際に適切な方法で思考を進めたいと考えています。部下に対しては適切な問いかけを行い、コーチングによって育成を加速させ、上司に対しても適切な問いかけを行うことでより良い意思決定を促していきたいと思います。組織全体でイシューを共通認識化することを意識して取り組みます。

クリティカルシンキング入門

問題を解く力を手に入れる方法

どう問いを整理する? 問いの立て方が非常にわかりやすくなりました。日常生活の中で何かしらの問題を感じているものの、それを言語化することが難しいと感じていたため、ぜひこのスキルを取り入れたいと考えています。そのためには、まずゴールを明確にし、それに必要な情報の収集と、その情報の分析・解釈が重要だと感じました。 多角的視点は? 特に私はヘルスケア業界に関わっているため、クライアントや医療従事者、患者さんといった様々な視点を持ちつつ、社会全体の医療制度についても考慮することが必要です。 会議の目的は? 部署の会議においては、目的とゴールを明確に設定することが大切です。参加者が何を決めたいのか、何を知りたいのかを考え、そのための目的やゴールを決めていきたいと思います。 どう学びを活かす? また、研修においては、その研修をどのような目的で行うのかをしっかりと考え、目的を丁寧に設定する必要があります。新たな事業創出に際しても、まずは問題のイシューからスタートし、そこから外れないように他者と共有しながら課題解決を図りたいです。常に「それって問いは何なのか?」と自問し続ける姿勢を持ち続けたいと思います。 説明の基本は? さらに、自分が何かを説明するときには、まず「どんな問いに答える説明なのか」という前提条件を提示してからプレゼンテーションを始めることが散らばりを防ぐ有効な方法だと考えています。 資料をどう見直す? 今後、これまでに作成してきた資料などについても、これらの学びを踏まえた上で見直しを行いたいと思います。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

分析を活用した価格設定の秘密

分析の基本とは? 分析とは、比較を通じて事象を理解することです。分析には、数値を基にした定量分析と、事象の背景や流れを検討する定性分析があります。これらの分析は、対象となる要素を分解し、様々な視点から詳細に検討する作業です。重要なのは、データを扱う際に注意が必要であり、異なるものを比較しないようにすることです。すなわち、「Apple to Orange」ではなく、「Apple to Apple」を意識し、見えているものだけでなく、見えていないものも視野に入れながら比較することが求められます。 リゾートホテルの価格戦略 例えば、リゾートホテルにおける宿泊価格の変動を分析する場合、グループ内の直営16施設の過去10年間の売上データを活用することが考えられます。また、旅行サイトの口コミも分析の参考にできます。これらのデータは、特に需要が高まる週末や祝日の売上を最大化するための社内向け資料として活用されます。近年の旅行者数の増加に伴い、これらの変化をデータとして捉えることで、より効果的な意思決定が可能となります。 ダイナミックプライシングの活用 具体的な販売戦略としては、客室は56日前から販売設定されており、分析した資料を元に販売時の価格を提案します。予約の受注数と周辺ホテルの料金を毎週比較し、価格設定の見直しを行います。また、過去10年間の売上データを基に、ダイナミックプライシングを活用して売上が最大化できたかどうかを分析します。このようにして、データ分析を通じて戦略的な価格設定を行うことで、売上の最大化を目指します。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

職種が「その他」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right