データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

戦略思考入門

速攻達成!最短ルートの見極め術

ゴール設定は正しい? 戦略思考とは、まず適切なゴールを設定し、現在地からゴールまでの道筋を描くことです。そして、一度ゴールを定めたら、可能な限り最短最速でゴールに到達することを目指します。特に、むやみに困難に立ち向かわないルート選びが重要であり、時間とコストを抑える観点からも最短最速を推奨します。 具体策はどうする? 自分自身やチーム全体の業務に対して、具体的にゴールを明確にし、言語化しておくことが大切です。また、現在地からゴールまでの他の可能なルートをリストアップし、必要なリソースを明確化することも欠かせません。さらに、対立を避けるルートについても考えを巡らせるべきですが、これについては具体的なイメージがまだつかめていない状態です。 今の選択は最適? 今期の目標に対する中間の見直しが予定されており、その中でチーム全体の業務や自分の業務に対するゴールを再度明確化します。そして、現在のルート以外にも候補があるのか、今の選択で問題ないかを見直す予定です。

データ・アナリティクス入門

問いと仮説が導く学びの軌跡

仮説思考の始まりは? 常に目的意識を持ち、問いを立てることから仮説思考は始まります。まずは、何を知りたいのか、どんな結果を期待するのかを明確にしてから仮説を立て、必要なデータを集めて分析を行います。こうしたプロセスが、分析作業において無駄を省き、効率よく目的に近づくための鍵となります。 グラフ作成のポイントは? また、グラフなどの可視化資料を作成する際も、まず仮説や伝えたいメッセージ、そして対象となる相手を意識することが大切です。誰に何を伝えたいのかを明確にして、伝わりやすい構成でグラフを作ることで、情報の意味が正しく伝わります。 新たな発見はどう? さらに、問いを発見する一助として、最新の研究結果や知見に触れることが有効です。たとえば、研究論文を読む機会を増やしたり、仲間から新たな情報を得るなど、日常的に情報収集に努めることが求められます。説明資料を作成する際も、自分が何を伝えたいのかを整理し、論理的かつ簡潔な表現でまとめることが重要です。

データ・アナリティクス入門

目的と仮説で切り拓く新世界

なぜ比較が大切? 今回の授業で改めて学んだのは、「分析は比較なり」という考え方と、目的や仮説を持って取り組む姿勢の重要性です。データ分析の根幹となるこの考え方は、今後の講義や業務の現場で常に意識して取り入れるべきだと感じました。 意見交換で何を得る? また、授業中にパソコンを購入する際の調査項目や、自身が望む条件について話し合った際、他の受講生の様々なアイデアが非常に参考になりました。この経験から、自分の考えに固執せず、複数の視点から意見交換を行うことのメリットを実感しました。 業務で分析のコツは? さらに、データ分析の考え方は業務においても広く応用できると考えています。例えば、ある業務プロセスにおいて不具合の解決を目的としてデータやプロセスを分析する際、目的や仮説を明確にすることが問題解決への近道になると感じています。 普段からデータ分析に携わっている方には、業務で分析を進める中で直面する課題や、その解決方法についてぜひお伺いしたいと思います。

データ・アナリティクス入門

平均だけじゃ見えない学びのヒント

平均値の弱点は? ビジネスや日常生活のさまざまな場面で代表値として利用される平均値ですが、実は大きな弱点があります。平均値はデータのばらつきを反映しておらず、同じ平均値でも、データの大半が平均値に近い場合もあれば、極端に大きな数値と小さな数値で構成され、平均に近い値が存在しない場合もあるのです。 重要要素は何? 苦情処理以外でもデータを活用する可能性は十分にあります。これまで、インフォメーションのヒットワールドでは似たような事例がいくつか見受けられましたが、どの要素が最も重要なのか、またすべてのデータを採用するのは現実的ではないと感じています。したがって、状況に応じてデータの加工が求められるのでしょう。 問い合わせ改善は? 一時的に問い合わせ内容を収集し、お客様が特に関心を寄せる内容を反映することで、その部分のサービス提供に工夫を凝らす考えです。さらに、第三者にこのデータを提供し、PADなどに入力することで、案内の効率化が期待できるでしょう。

データ・アナリティクス入門

思考が変わる!分析への新挑戦

新たな視点って何? 短い期間ではありましたが、今まで知らなかった新たな視点と、分析の基礎的な部分に取り組む機会を得ることができました。この経験により、従来エクセルでグラフを作成することだけが分析だと思っていた意識を改める大切なきっかけにもなりました。 切り口をどう見る? また、改めて切り口や最終的に求める結果を明確に認識する重要性を実感しました。言われたことをこなすのは当然ですが、それだけでなく、どのような追加の分析が可能か、現在の活動がフレームワーク上で重複していないかを考えるようになりました。 未来の分析はどう? さらに、サイトなどを通じて他の場所での売り上げ分析の出し方を学び、今後自分が目指すべき方向性を掴む機会にもなりました。分析は過去のデータを用いることが一般的ですが、未来を見据える分野での活用を考える際、歴史上の革命と呼ばれるタイミングで起きた出来事を参考にすることで、役立つ知見を得られるのではないかという考えに至りました。

データ・アナリティクス入門

データ分析で見えた学びの本質とは?

データ分析の目的は何か? これまでの学習を振り返り、データ分析において目的が重要であることを再認識しました。自分がどうありたいのか、そのためになぜデータ分析を学ぶのかをしっかりと言葉にすることが大切だと感じました。振り返りの中で、学習した内容を理解したつもりでも、言葉にできなかったり、理解が定着していないことがあると気付きました。 学んだことを実務にどう活かす? 講座全体を通じて学んだデータ分析のプロセスを、実際のお客さまアンケートや業務指標の分析に活用しています。サービス品質向上のために、問題点や原因を見つけ、それに対してどう対策するのかを具体的に見出していきます。 データ分析の具体的な手順は? まずは9月末までに、上半期の各種データの大きな傾向を洗い出し、仮説構築まで行います。その後、10月に入ったら上半期全体のデータを当てはめ、より詳細な分析を進めます。データのビジュアル化も必要なため、Tableauに新たなダッシュボードを作成します。

データ・アナリティクス入門

データ分析の新視点を見つけた瞬間

データ分析の重要性再確認 ライブ授業で教わった「データ分析は比較である」ということや、目的に沿った分析が重要だという点は、今までの経験から理解していたつもりでした。しかし、動画で出てきた愛の値段の計算や補強すべき部分の選択などの設問に答えることができなかったため、自分にはまだできていないことが多いと気づかされました。 比較視点をどう持つか? プロジェクトや業績の実績評価の際に、他の競合や他の例と比較して報告することができたら良いと思いました。「Apple to Apple」の比較対象を探すことは簡単ではありませんが、比較がないよりは評価や分析が深まるはずですので、挑戦したいと考えています。 比較癖をつけるための方法 結果や業績などの数字を見た際に、必ず他と比較する視点を身に付けることが重要です。何と比較して良かったのか、標準はどのくらいなのかを自分で確認するようにし、その比較対象があることでどのような見え方になるのかを考える癖を付けたいと思います。

戦略思考入門

差別化の壁を乗り越えるヒント

模倣リスクはどう考える? ポーター論におけるコスト戦略、差別化戦略、集中戦略の中で、特に差別化戦略は実際に実践する際の難易度の高さを実感しました。どれほど他社に真似されにくい戦略を立案しても、現実には数年以内に模倣されてしまう事例を目の当たりにしています。VRIO分析で模倣困難性があったとしても、社内でその戦略の理解が進まなかったり、新制度の浸透に時間がかかると、効果が半減してしまうのではないかと考え、さまざまな視点をバランスよく取り入れることの重要性を痛感しました。 採用戦略の課題は? また、自分が担当している採用プロジェクトでは、募集エリアが非常にニッチなため、応募が思うように集まらない状況です。これまで同じ職種で競合と戦略を立ててきましたが、今回、従来とは異なる職種、つまり、異業種の中での差別化戦略を検討し、母集団の形成を目指すことも一つの手段ではないかと感じています。そのため、現職から転職してきた方々の分析を進める必要があると考えています。

戦略思考入門

受講生が語る戦略のひととき

ターゲットの重要性は? 自社や競合の状況を整理し、まずはターゲットとなる顧客を明確に定めることが基本です。ターゲット顧客の視点で、どの施策が意味のあるものかを検討し、差別化すべき相手を意識することが重要です。 持続可能な戦略は? その上で、差別化のための施策案においては、実現可能性や持続性についても十分に考える必要があります。戦略の検討は、顧客ニーズに合わせた具体的なアプローチとなるよう心がけます。 ポジショニングは? また、戦略立案の際には、ポーターの基本戦略を活用してポジショニングを明確にし、VRIO分析を通じて自社の強みを活かしながら差別化を図ることが求められます。 実践する理由は? さらに、クライアントとの対話においては、ありきたりなアイデアではなく、今週学んだポイントを実践し、深く広く検討する姿勢が必要です。この経験を機に、これまで十分にできていなかった自社分析をしっかりと行い、今後の戦略策定に役立てていきたいと考えています。

クリティカルシンキング入門

直感に学ぶ本当の対話術

直感ってどうなの? 直感に頼ってアイディアを基に仕事を進める自分の傾向に気づきましたが、その方法が時として暴力的に映ることもあると感じています。また、他者の視点を十分に考慮しないコミュニケーションは、相手に対して失礼にあたるだけでなく、押し付けに繋がる恐れがあると認識しています。 クライアントに伝わる? クライアントとの対話において、こうした経験は課題ヒアリング時に十分に活かせると感じています。クライアントのニーズに合致しなければ、本当にお役に立てるとは言えません。そのため、対価を頂く以上、ニーズを正確に理解する努力が必要だと強く思っています。 視点の違いを感じる? また、自分の思考の癖に気づくと同時に、他者が異なる視点を持っているという前提で対話を進めることが大切だと考えるようになりました。相手にも自分にもフラットな態度で臨むため、俯瞰的な視点を常に意識し、今後習得するスキルを活用して自分自身を疑い続ける方法を学んでいきたいと思います。

クリティカルシンキング入門

データ切り口で見える解約の真実

データはどう活かす? データ自体を見るだけではなく、その見せ方を工夫することで、グラフ化したり比率を示したりするなど、異なる視点から事実が浮かび上がることが分かりました。さらに、データを様々な切り口から分析することで、明確な傾向が見えてくると同時に、その切り口に意味があるかどうかが重要であると感じました。 解約傾向は何だ? また、解約企業の傾向(解約時期や解約理由など)を詳細に分析することで、必要な施策を適切なタイミングで実行できるのではないかという考えに至りました。そこで、復習も兼ねて、以下の点について取り組んでみることにしました。 施策実行の鍵は? まず、解約企業のリストを作成し、解約理由を細かく分解してデータ化します。さらに、解約企業の利用状況を抽出し、解約前の利用状況も分解してデータ化することで、今後の活動施策への活用を目指します。これにより、既存顧客へのアプローチの際、重点的に注力すべきポイントを明確にすることができると考えています。

女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right