クリティカルシンキング入門

学びの積み重ねで未来を創る

学びはどう定着? 繰り返し学ぶことで知識が重なり、定着していくことを実感しました。一度学んだ内容を単にインプットするだけでなく、積極的にアウトプットする癖が大切だと感じました。また、大きな目標に向かう前にしっかりと地固めを行い、一人で抱え込まず、他者の意見を取り入れてブラッシュアップする姿勢の重要性も学びになりました。継続的に問い、共有するプロセスが、知識の深化に役立つと感じています。 文章はどう伝わる? 先輩方の発言も大変印象に残りました。相手に伝わりやすい文章とはどのようなものか、先輩たちの話し方や構成に強い影響を受け、今後はこれまでの学びを振り返りながら、より効果的な伝達力を身に付けるためのトレーニングに励みたいと思います。 企画はどう進める? 業務の企画立案においては、まず目的を明確に意識しつつ、スケジュールを立てた上で資料作成や関連部署とのディスカッションを行っています。さまざまな立場から意見をいただき、改善できる部分はしっかりと見直すことで、計画そのものを多角的に検証する必要があると感じました。 実践はどう組み立て? 具体的には、まず思い描いたアイデアを記録できるノートを用意し、長期・中期・短期のスケジュールを立てて進捗管理を行うことが重要です。また、いきなり行動に移すのではなく、まずは本質となるイシューから整理し、論理的に行動を組み立てること。こうした一歩一歩の積み重ねが、知識と経験の向上につながると考えています。さらに、偏った自分の視点を見直すためにも、他者の意見を積極的に聴き、できるだけその過程を文章に残していくことが大切だと感じています。

クリティカルシンキング入門

視野が広がる学びの旅

楽しさを実感した学び 学ぶことの楽しさを実感できました。これまで、物事を一つの視点からしか考えていないと気付かされました。例えば、病院についてのディスカッションでは、研究施設や避難所など、私の視野を超えた多様な視点があり、「すごいな〜」と感心しながら学ぶことができました。また、懇親会では慣れない場でも声をかけていただき、私の話を聞いてもらえて嬉しく、あっという間の時間でした。短い時間でしたが、とても充実した時間を過ごせそうです。 表現力を磨くために 私は表現することが苦手ですが、考えを整理し、ロジックツリーを使いながら可視化を進めていきたいと思います。これからも頑張りますので、よろしくお願いいたします。 知識を積み重ねる方法とは? 企画立案に役立つ知識を得ようと、多方面にわたり学びたいと考えています。私の所属する部署は営業推進で、フロントに近い部分ですが、業務を円滑に進めるためには、コンプライアンスや事務部門との連携が不可欠です。浅く広く学ぶことから始め、知識を積み重ねていきたいと思います。 弱点克服に向けて挑戦する 私は言語化が苦手で、ボキャブラリーが少ないと感じています。昨日学んだロジックツリーを活用し、日々テーマを決めて少しずつ作成し、翌日に見直すことを続けていきたいと思いました。できないことは何度も繰り返し訓練することで、少しずつ成長を感じられるかもしれません。過去には自分の弱点を避けて通ってきましたが、これからは向き合い、克服に努めたいと思います。皆さまの考え方を伺う中で多くを学び、とても楽しい時間でした。今後ともよろしくお願いいたします。

クリティカルシンキング入門

学びを行動に変えるプロの秘訣

講義の振り返りは? 今週は講義や演習を通じて、学びの振り返りや反復を重点的に行いました。忘れていた学習内容やキーワードも再確認し、改めて重要なポイントを点検できました。クリティカルシンキングの学習では、単に思考を鍛えるだけでなく、社会人として効果的に学ぶためのポイントも確認できたと感じています。それには、ルーティンの構築、反復、他者との共有、実践での活用が含まれます。 会議準備はどうだった? 様々な会議に向けた準備では、資料と発表シナリオを作成する際、イシューの設定と論理構造の構築を実践しました。具体的には、人材戦略検討会の資料作成とファシリテーション、労使協議の資料作成と説明、社内研修の講義資料作成と説明に取り組みました。 チームで何を学ぶ? チームメンバーとの打ち合わせの際には、問題解決のための打ち合わせやファシリテーションを行い、若手メンバーの育成や指導に力を入れました。課題解決の際は、まずメンバーとイシューをしっかり把握し、すぐに解決策には飛びつかず、課題の本質に向き合うような問いかけを心がけています。メンバー育成においても、直接解決策を示すのではなく、できるだけ本人が自らの言葉で考えを導き出せるようなコーチングを実践しています。 資料作成は順調? また、資料作成の際には下書きを欠かさず、論理的に構成する作業を行っています。これにより、説明時のシナリオも作りやすくなります。新たな知識やスキルの習得時(資格取得等)にも、学習の仕掛けづくりを意識し、朝の決まった時間にルーティンを形成し、自分の言葉での言語化などを心がけています。

データ・アナリティクス入門

ファネル分析で見える改善の鍵

ファネル分析はどう? 問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。 募集プロセスはどう? 生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。 事例調査はどう? 具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。

データ・アナリティクス入門

プロセスで紐解く成功の鍵

問題の原因は何か? まず、問題の原因をプロセスごとに分けて考える手法は、表示回数、クリック数、申し込み数の比率を提示することで、単に回数が多いという表面的な仮説だけでなく、表示回数に対してクリック数が多い点や、クリックから申し込みへの転換率の高さなど、各段階ごとに比較が可能となり、疑問点が見つかりやすくなると感じました。 対比で何が分かる? また、ある事象を自社とそれ以外といった対となる概念で見ることで、思考の幅を広げ、仮説が出しやすくなるという視点にも共感しました。この方法は、試行錯誤の中で新たな発見につながり、より効果的な改善策を導く手がかりとなると思います。 ABテストの本質は? さらに、ABテストについては、要素を限定して2つの試作品を比較する手法として、検証の目的を明確にし、1要素ずつ慎重にテストを進める必要があると実感しました。特に、環境要因に左右されないように、同時期に実施する点は非常に重要であると考えます。 遅延原因はどう把握する? また、デザイン制作の遅延要因の分析において、プロセスを分ける方法は大変有用だと感じました。理由を分類することで、自分たちの問題なのか、他の要因にあるのかを切り分けながら対策を進められる点に納得しています。 効果的な手法は何か? 最後に、ABテストの進め方を見直す必要性も実感しました。簡易なオンラインテストで漠然とどちらが良いかを判断するのではなく、検証の目的を絞って段階的に実施することで、デザインの改善点を具体的に確認しながら進める手法に大いに可能性を感じました。

データ・アナリティクス入門

問題と向き合う力が未来を拓く

問題解決は何から始まる? 問題解決ステップでは、3つのW(what、where、why)と1つのH(how)を意識して原因を探ります。また、問題を4つのステップに分解し、さらに解決策を細分化して検討する点が特徴です。こうして分解した項目をロジックツリーで整理することで、全体像を視覚的に明示できるメリットがあります。 何故この手法は有効? この手法の強みは、問題解決のプロセスを段階的に整理することで、原因を建設的に示せる点にあります。思いつきや声の大きい意見に頼るのではなく、なぜその問題が発生したのかを共有しやすくなるため、全員が納得しながら前に進むことができます。さらに、解決策についても、アイデアを出して細分化するだけでなく、ロジックツリーで集約することで業務フローを見える化し、メンバー間のタスク実行に大いに役立ちます。 時間軸はどう活かす? なお、講義動画では「when」という要素が取り上げられていませんが、実際の業務フローでは時間軸や優先順位を意識することも重要です。時間軸を考慮することで、いつ行動すべきかが明確になり、作業効率の向上につながります。 現状認識はどう向上? また、どんなに優れた枠組みや手法を知っていても、現状の観察と認知をいかに客観的かつ細部まで把握できるかが、結果の精度に大きく影響します。作業時の時間的制約の中でも、日ごろから現状を正確に認識する習慣を意識することが求められます。さらに、ロジックツリーは、鋭い切り口を見つける訓練としても有効であり、日常的な思考整理に役立てていきたいと感じます。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

マーケティング入門

イノベーション普及の鍵を掴む学び

イノベーションの普及要件とは? これまで、顧客視点で魅力を追求する重要性を学んできましたが、物が売れるためにはイノベーションの普及要件も重要であることが印象的でした。 イノベーションの普及要件には以下の五つがあります。まず、比較優位性とは従来のアイデアや技術と比較した際の優位性を指します。次に、適合性は生活に大きな変化を強いるものは採用されにくいことを意味します。さらに、わかりやすさは使い手にとって理解しやすく、使いやすいことが重要です。また、試用可能性は実験的な使用が可能であることを意味し、可視性は新しいアイデアや技術を採用していることが周囲から観察されやすいことを指します。 マーケット分析での注意点は? マーケットを年齢や性別のみで捉えるのは危険です。心理的変数や行動変数、成長性、そして競合商品も考慮する必要があります。 提案書改善のために何を意識する? 自社のサービスはBtoBであるため、すべての要件が当てはまるわけではありませんが、比較優位性やわかりやすさ、可視性を意識した見せ方をすることで、提案書の改善が期待できると思います。現在作成中の提案書について、これらの普及要件に当てはめられるか、チームで話し合いたいと思います。 学んだことをどう活用する? 先週、セグメンテーションやポジショニングマップの説明をチームで行い、イノベーションの普及要件についての学びを共有しました。新規案件の提案書作成において、この学びを活用し、提案書のブラッシュアップができるよう、チームでミーティングを行いました。

データ・アナリティクス入門

振り返りに潜む学びのエッセンス

フレームワークはどう活かす? 3Cや4Pなどのフレームワークを活用して、問題を細分化することで仮説を立てやすくなります。検討事項を分解することで、具体的かつ論理的な課題設定が可能になり、全体像が明確になります。 データ分析は何故重要? 既存のデータと新たに収集するデータを組み合わせ、多角的に分析を進めることが重要です。手持ちのデータをどのような視点で再分析するか工夫するとともに、公開されている一般データも活用して、消費者の行動傾向などの研究に取り組むと良いでしょう。さらに、必要な詳細データを得るために、広範な集団の傾向を把握できるアンケートや、特定の対象に対して深掘りするインタビューといった方法を、ケースバイケースで使い分けることで、既存データを補完し、分析の精度を高めることができます。 仮説はどう検証する? 仮説を立てる際には、複数の仮説を同時に設定し、それぞれの網羅性を持たせることが大切です。何気なく仮説を設定するのではなく、比較の指標や対象を明確にし、具体的な意図を持って検討することで、説得力のある仮説が構築できるでしょう。 なぜ仮説策定する? 仮説を策定する理由としては、検討マインドや説得力の向上、関心および問題意識の深化、意思決定のスピードアップ、そして行動の精度向上が挙げられます。普段の業務でも仮説構築は行われていますが、フレームワークを意識し、何を比較すべきか、対象は誰か、どのように情報を収集するかを十分に検討することで、より総合的で優れたデータ分析体制を整えることができます。

データ・アナリティクス入門

仮説×多角視点で見つけた新発見

仮説の組み立て方は? 仮説を立てる際には、【What/Where/Why/How】の各視点を用いると整理しやすくなります。具体的には、①問題は何か、②問題が発生している場所、③なぜ発生しているのか、④その解決策というステップで進めます。もし手掛かりが得られない場合は、【3C】や【4P】といったフレームワークも有効です。大切なのは、仮説の正確性よりも複数の異なる視点からの検証ができるかどうかであり、全体を満遍なくカバーする形で複数の仮説を立てることが望ましいです。その上で、データ収集や検証を行い、どこに問題が存在するのか、そして適切な解決策は何かを探ります。 お客様行動の理由は? 顧客の行動分析において、この方法が非常に役立ちそうだと感じました。普段からお客様の行動についてはある程度の傾向を把握しているものの、なぜそのような行動に至るのかという原因まで深堀りできていなかったため、今回の仮説設定と検証を通じて明らかにしたいと思います。また、これまでなかった【3C】や【4P】の視点を取り入れることで新たな気づきも得られると期待しています。 データ収集の方法は? まずは、自社が所有しているデータを収集するところから始める必要があります。現状のデータだけでは不足している可能性があるため、必要なデータをどのように取得するかを検討し、取得にかかる費用と解決したい問題とのバランスも考慮したいと考えています。加えて、仮説を立てることでスタッフ全員が同じ視点に立ち、各自の気づきを共有できる環境を作りたいと思います。

データ・アナリティクス入門

問題を解決するための分析フレームワーク活用術

問題の絞り込み方法は? 問題の箇所を明確にするためには、まず分析対象を絞り、原因を考えやすくします。また根本的な原因の仮説を立てる際には、3C(市場、競合、自社)や4P(製品、価格、場所、プロモーション)のフレームワークを活用します。そして、仮説に基づいてデータを集めます。この過程では、必要なデータが何かを見極めることが重要です。 仮説構築の多様性は重要? 仮説は複数立てるべきで、決め打ちにしないよう注意します。また、異なる切り口で網羅的な仮説を立てることも大切です。データ収集は、自分で取りに行ったり、誰かに聞いたりして行います。また、比較のためのデータも集めます。さらに、反論を排除するためのデータを集めることも重要です。自分に都合の良い情報だけを集めるのではなく、説得力のある分析を目指します。 データ分析のポイントは? データを見る際には、意図を持って分析します。例えば、問題箇所を絞り込み、フレームワークを活用して根本的な原因の仮説を立てます。その際、異なる切り口から多角的に仮説を立てるよう心がけます。そして、データを集めて比較し、反論を排除するための情報まで踏み込んで確認します。この一連のステップを可視化し、習慣化することが重要です。 どのフレームワークが適切? 仮説を立てるためのフレームワークについては、自分の業務に適したものを探し、過去の事例から有効なフレームワークを検証します。反論を排除する情報を集めるためには、周りのメンバーの協力を得て壁打ちを行い、反論点を意識的に探るようにします。

戦略思考入門

常識を覆す独自アイデア

何が差別化の鍵? ありきたりのアイデアに簡単に飛びつくのではなく、徹底的に考え抜くことで差別化が実現できると考えます。その際、他業界の事例や多くの知見を活用することが重要です。 本当に新たな視点は? ライバル企業に過度に意識を向けるのではなく、全く新しいアプローチを模索することが求められます。市場や顧客のニーズと自社の強みを見極め、従来とは異なる視点から製品やサービスを企画する姿勢が大切です。 持続可能な施策は? 差別化を考える際には、実施する施策が持続可能であるかどうかも十分に検討する必要があります。加えて、業務プロセスや組織としての能力を高めることで、模倣が困難な体制を築くことが差別化を確固たるものにします。 比較以外の学びは? これまでのアプローチは、同業他社との比較を通じて差異を見出すことに重点を置いていました。しかし、今後はあえてライバル比較の枠組みから離れ、他業界の成功事例を学び、その中で差別化の要素を見出すことにシフトしていきます。 成功事例を追えてる? 具体的には、BtoBのサービス業界で業界シェアを拡大している優良事例を取り上げ、どのように差別化を実現してきたかを研究します。その中から自社に応用可能な要素を抽出します。 市場の未来はどう? さらに、マクロ環境の分析や顧客分析を通じて、今後市場でニーズが拡大すると仮説される分野を見極め、自社の強みを活かした新たなサービスや施策を検討します。そして、その計画の中にどのように差別化を組み込むかを丁寧に考察していきます。

50代の女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right