データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

クリティカルシンキング入門

小さな問い、大きな発見

問題はどう浮かび上がる? 要素を分解して検討することで、解決すべき問題を明確にすることが可能です。データを提示する際にも、意図を持って伝えなければ単なる数字の羅列に過ぎず、その意味は薄れてしまいます。また、問題解決の方向性を定める際は、ただアイデアを出すのではなく、まず適切な問いを立てることが重要です。問いの立て方次第で、最終的な成功確度が大きく変わるため、時間と労力を問いの検討に注ぐべきだと感じます。 現場でどう対策する? 具体的な業務の現場では、所属する広告グループでの広告施策の検討において、この考え方が非常に役立ちました。たとえば、ブランドの健康状態について、どのような問題や課題が存在するのかを細かく分析し、その上で広告という刺激がどのような対策となり得るかを論理的に整理することが求められます。ブランドの課題や背景を正確に把握し、対策の方向性や具体的な手段を順序立てて考えることで、実施する施策が本当に課題解決に寄与するかどうかを見極めることができるのです。

マーケティング入門

誰に売るかが未来を創る

誰にアピールすべき? 「誰に売るか」という視点の重要性を実感しました。最初は具体的に何をどう考えればよいのか分からなかったものの、実践演習の設問に沿って一つひとつ整理していくうちに、その考え方の本質が理解できるようになりました。ほかの事例についても同様に検討してみたいと思います。 システムの見直しは? また、以前作成したものの、全く成果を上げられていないシステムについて悩んでいました。ターゲット層には既に優れた競合が存在しており、現状のシステムを一新するのは現実的でないという認識から、まずはターゲット層を切り替えることに着目することにしました。 伝え方はどうすべき? その上で、営業チームや開発の主担当と協力し、既存システムのどの機能を誰に届けるべきかを話し合いました。システム導入を決定する意思決定者が何を基準として判断しているのか、また担当者にどのような価値を訴求すれば導入の後押しとなるのか、といった点について深く検討する良い機会となりました。

リーダーシップ・キャリアビジョン入門

仕事の本質と目的を見極めるヒント

仕事のゴールを確認する理由は? 仕事を任されたときは、まず相手が考えるゴールが自分の認識と一致しているかを確認することが重要です。また、自分が上司であった場合、部下に仕事を依頼する際に、逆の立場でどう感じるかを想像することが大切だと感じました。 依頼された仕事はどう慎重に取り扱う? 現在、部下を持たない私にとっては、周囲から依頼された仕事に対して、そのゴールが正しいかを確認する必要があります。仕事の意義についても、日々の業務が会社の目的とどのように結びついているのかを理解することが重要です。それを怠った場合、周囲にどのような影響を及ぼすのかを考える習慣を持つことが求められます。 仕事の最終目的は何かを理解するには? したがって、仕事を依頼された際には、その内容が適切かどうかを必ず確認する癖をつけることに努めます。そして、今の仕事が最終的に何につながっているのかを考え、それをスキップした場合に周囲にどのような影響があるのかを想像していくようにします。

クリティカルシンキング入門

「数字を読み解く力を鍛える!」

わかった気になることのリスクは? わかった気にならないことが大事だと学びました。上辺だけの数字に惑わされず、数字の分解、それらをしっかり可視化し、解像度を上げることが重要です。数字だけを見てわかった気になるのは仕事でも陥りやすいことだと思うので、日々の仕事でも意識したいと考えています。 意思決定に必要な定量的根拠とは? 仕事の立場上、フラットに俯瞰的な目で意思決定をする場面があります。誰もがその意思決定に納得できる形にするためには、定量的な根拠が必須です。物事を分解し要所を理解することで、説得力が向上すると思います。早速実践に移したいと考えています。 数字を分解するためのステップ 数字の分解はまず場数を踏むことが大切です。さらに、分解した内容を他の人にも見てもらいフィードバックをもらうことを意識したいです。そのうえで、数字の分解だけにこだわるのではなく、可視化や図式化などビジュアル化して、今以上のアウトプットを出せるようチャレンジしたいと思います。

クリティカルシンキング入門

文章構造化のコツを学ぶ魅力

文章を構造化するには? 文章を作成する際には、まず構造化を意識することが重要です。特に主語と述語に注意を払いながら、文章を組み立てる必要があります。主張とその理由をピラミッドストラクチャーで整理し、文章を展開することが効果的です。 伝わる報告・メールのコツは? 上司への報告や顧客へのメールを書く際にも、単なる羅列ではなく、常に構造を意識することで、伝わりやすい文章を作成することができます。特に自分の主張を通したい場合には、ピラミッドストラクチャーを用いることで整理され、説得力が増します。 会話にも活用できる?構造化の技術 このようなスキルは、日常的な文章作成だけでなく、会話の中でも役立ちます。話をする際には、自分の話が構造化されているかどうかを意識することで、相手にとって聞きやすい工夫をすると良いでしょう。また、相手の話を聞く際にも、話が発散してしまった場合には、ピラミッドストラクチャーを用いて相手の意見を整理し、理解を深めることができます。

データ・アナリティクス入門

今こそ見直す!全体把握で業務スッキリ

講座全体の流れは? week1からこれまでの内容を総ざらいした結果、実際の業務では一つ一つじっくり考える時間が限られていると実感しました。その中で、改めて講座全体の流れや全体像を把握できた点は今後の業務に大いに役立つと感じています。 整理と対策は? また、FY25 1Qの振り返りと今後の対策を検討する際に今回の作業内容が活かせると考えています。今年度は中期計画における節目の年であり、目標達成が不可欠なため、効率よく物事を整理し、考察していく必要があります。そのため、現時点での状況と課題の整理、そしてどの課題に打ち手を打つと効果が高いかをしっかり見極めることが重要です。 連携と見直しは? チーム内でも同様の検討が進められており、自分なりの仮説も含めて、積極的に意見を発信していこうと思っています。まずは来週までに、問題点の定義や数値の集計、そして課題となりうるポイントを明確にし、その後の対策についても検討していきたいと考えています。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

データ・アナリティクス入門

グラフでひもとく学びの秘密

ビジュアル化はどう極める? データ分析において、ビジュアル化は非常に大きな価値を持つと実感しました。正しいビジュアル化を実現するためには、データの加工や適切なグラフの選定が鍵となります。特に、円グラフとヒストグラフのどちらを用いるかで迷うことが多いため、今後は意識を高めて判断していきたいと考えています。 提案資料の魅力は? 現時点では業務上頻繁に活用する機会はないかもしれませんが、将来的に提案資料を作成する際、ビジュアル化にこだわった資料作成を心がけることで、提案内容の有用性を直感的に伝えることができると感じています。 グラフ加工はどう学ぶ? また、今回の履修ではヒストグラフや円グラフなど、さまざまなグラフの種類を学び、大量のデータをどのように加工していくかについても学習しました。さらに、ビジュアル化した情報の伝え方についても工夫する必要性を再認識し、どの方向性で判断いただきたいかを明確にすることが重要であると理解しました。

データ・アナリティクス入門

問題解決の新たな発見と実践技巧

問題の特定方法には何がある? 問題の特定方法について、さまざまな考え方があることを学びました。特に、5W1Hを駆使して繰り返し考察を行うことで、より意義のある分析にたどり着けることがわかりました。また、MECE(Mutually Exclusive, Collectively Exhaustive)を意識することで、分析の精度が高まると理解しました。 定量的でない問題にどう対応する? この方法は、特に定量的でない問題やトラブルの対応に役立ちそうです。さまざまなシステムを活用しているため、どこに問題があるかを素早く把握するために、MECEやロジックツリーを活用して解決を図りたいと考えています。 ロジックツリーの活用方法を説明 具体的には、ロジックツリーをWordやExcelなどで作成し、問題を視覚的に整理することを目指しています。この方法により、直感的には気づかなかった問題や課題の本質を見つけやすくなると期待しています。

データ・アナリティクス入門

学生退学率を下げるための分析法を学ぶ

比較で分析を深めるには? 「分析は比較」という考え方が非常に印象に残りました。単に分析対象を見るだけでなく、他と比較することでその状態を分かりやすく確認できます。また、比較の際に「目的」や「分析に必要な要素」を考慮することで、ぶれない分析が可能になると学びました。 学生の退学率にどう対策する? 私は大学で勤務しており、学生データの分析を頻繁に行っています。特に「入学した学生の退学率をどのように防ぐか」という大きな課題が常にあります。この問題を解決するためには、問題を適切に切り分けて、それに対する適切な施策や提案を行う必要があると感じました。 退学率低下の具体策は? 具体的には、「学生の退学率を低下させる」といった目標が定まっているので、まずはその問題を要素ごとに分けて考えます。例えば、退学率の過去の推移を確認し、変動が大学内部の問題によるものなのか、それとも外部要因によるものなのかを区別することから始めます。

20代の男性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right