クリティカルシンキング入門

正しい日本語での文章作成の重要性を学ぶ旅

日本語の重要性はなぜ大切? 文章を書く際には、日本語を正しく利用することの重要性を実感しました。自分の中では理解していることを文章にすることが多いため、「これは省いてもわかるだろう」と考え、自分が楽をするために手を抜いてしまうことがあります。しかし、読み手は何も知らない状態で初めてその文章を読むため、「?」を浮かべずに理解できるよう、正しくわかりやすい文章を書くことが大切だと感じました。読み手が誰であるかを意識し、相手のことを考えながら文章を作る必要があります。人によって気になるポイントは異なるため、相手が気にするであろう内容を予測し、枠組みを作成することが重要です。 主張を効果的に伝えるには? 何かを主張したい際には、あらかじめ構造を考えた上で具体化することが不可欠です。突然思い付きで話を進めるのではなく、しっかりとした根拠を踏まえた上で主張を具体化することが大切です。このようにすることで、論理的で分かりやすい文章が生まれます。 質問を防ぐための文章とは? 特に、大したことのない内容を述べるときこそ、伝わりやすい表現を心掛けるべきです。たとえば、飲み会の企画や、日常的な事柄を伝える際にも、「何を伝えたいのか」を明確にし、分かりやすい文章を作成することが求められます。また、顧客へメールを送信する際には、隠れた前提や専門用語の使用、誤った日本語、誤読の可能性がないかを確認することが重要です。 シンプルな伝達はどう実現する? さらに、顧客と電話で話した内容をセールスに伝える際には、シンプルでわかりやすい文章を作成する必要があります。情報が必要かどうかを吟味し、余計な情報を省くことで、簡潔な伝達が可能となります。 ミーティングでの効果的な発信方法 どんな場合でも、読み手のことを考慮し、わかりやすい文章を心掛けることが大切です。送る前に必ず自分で再度読み直し、「?」が浮かばないかを確認するようにしています。基本的には、聞き返されることなく、一度で理解してもらえることを目標としています。ミーティングで何かを主張する際にも、まずは根拠を把握し、それを基に具体化することが重要です。突然具体例を挙げて話すと冗長になるため、構造を考えた上で具体化することを心掛けています。

クリティカルシンキング入門

思考整理の具体的手法と実践の大切さを学ぶ

言葉の重要性に気づく 今回大事だと感じたポイントは以下の四点です。 まず、自分の言葉により相手の負担度が変わってしまうこと。これは、サボってはいけないということを意味します。次に、「誰がどうしたか」を明確に伝わりやすい文章にすることが重要です。さらに、結論を支える根拠を複数出すことが求められます。そして、理解を得たい相手が何を気にするかを考え、そのポイントを押さえた根拠を提示することが重要です。 説得力を増すには? また、説得力を増す手法として以下の点を学びました。主語、述語を正しく使うこと、短文で分かりやすくすること、結論を先に述べ根拠をあとにすること、根拠の観点が何であるかを意識すること、そして思いついた根拠の対となるものを考えることです。さらに、根拠を具体化することも重要です。 一方で、自分が根拠として具体化して出した例は根拠として弱いものでした。模範解答のような強い根拠を出すためにはどうすれば良いのかを学ぶ必要があると感じました。 学びをどう活かす? 自分自身の思考の整理やそれを伝える必要がある場合に今回の学びを活用できると思いました。具体的には、上司や部下、関係部署への説明、メールやチャットでの投稿、アプリ開発や販売施策における優先順位決めや実施判断、会議の内容整理などです。 また、具体的な手法をいくつか学べましたので、後輩指導時にも活用していきたいと考えています。 効果的な手法とは? 例えば、検討や整理の際にはピラミッドストラクチャーを作ること、根拠の観点が何かを考えること、また他の強い根拠となる事例がないかを検討することが有効です。説明や伝達の際には、伝えたい内容を最初に述べること、そして主語述語を正しく使うことが効果的です。 実践の大切さを学ぶ 今回の学習については、自分自身でも落とし込めていない点が多く、グループワーク課題を行う前に振り返りが必要だと感じました。実際に行ってみることで根拠の観点がずれていたり、自分の考えを文章にすることで異なる結論が導かれることもありました。これにより実践することの大事さを改めて感じました。そのため、WEEK1の復習として考えたことを文章化し、WEEK3のスキル定着を図りたいと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

データ・アナリティクス入門

仮説思考で未来を切り拓く

仮説思考はどう? 今週は、仮説思考の重要性と、仮説を立てる際の具体的なポイントについて学びました。仮説とは、まだ十分に明らかでない論点に対して一時的に答えを設定し、それを行動や検証の出発点とするものです。単なる思いつきではなく、論理的な根拠に基づいた取り組みが求められると実感しました。 複数の仮説は必要? 仮説を立てる際は、一つに絞るのではなく、複数の仮説を用意することが大切です。それぞれが漏れや重複なく、論点を網羅していることが求められます。また、データを収集する際には「誰に」どのように聞くかという視点を持ち、主観や偏りのない情報を得る工夫が必要だと感じました。 仮説の効果は何? 仮説思考の意義は、検証マインドの育成や、発言・提案の説得力の向上、問題に対する関心の深化と主体的な行動、判断や対応のスピードアップ、そして行動の精度向上にあります。これらは、実際の業務に直結する価値ある視点であり、感覚や経験だけに頼らない論理的な思考が、結果として仕事の質を高めると実感しました。 トラブルにどう対応? 特に、現場でトラブルや進捗の遅れが発生した場合には、「なぜこうなっているのか?」という問いかけから複数の仮説を立て、原因を洗い出すことが有効だと感じました。例えば、工程が遅れていると感じた際に「人員が不足しているのではないか」「機器の稼働率が低下しているのではないか」「必要な資材が届いていないのではないか」といった仮説を言語化し、関係者と共有することで問題解決に近づけると考えています。 安全面はどう考える? また、現場で安全面に関する小さなヒヤリハットが発生した場合にも、単なる報告に留めず、「なぜ起きたのか?」という問いを立て、複数の仮説に基づいて現状を確認し、改善策を具体的に考えることが重要です。定例の会議や社内報告においては、結論のみならず、その背景にある「こう考えた理由=仮説」のプロセスを伝えることで、より説得力のある報告や提案が可能になると思います。 どう改善していく? 今後は、現場で何らかの問題に直面した際に、まず論理的に仮説を立て、それをもとに検証し、改善していくという思考の流れを、日々の業務に積極的に取り入れていきたいと考えています。

アカウンティング入門

オリエンタルランドで探る決算の秘密

オリエンタルランドの視点は? 今回、オリエンタルランドを題材に、P/L(損益計算書)とB/S(貸借対照表)を読み解くワークに取り組みました。まず、事業活動を考える際に、①顧客や企業、②提供価値、③価値提供のための活動、④経営資源といった要素を仮定し、それに基づいてP/Lの売上や売上原価、B/Sの資産を具体的に整理しました。このフレームワークは非常に分かりやすく、今後も活用していきたいと感じました。 売上はどう計上される? 売上については、想定通りアトラクションやショー、商品販売などの順で計上されていました。しかし、オリエンタルランドの事業セクションが分かれているため、どこまでを同社の売上として扱うかという点は検討の余地があると感じました。一方、売上原価に関しては、商品原価は想定どおりでしたが、同社の場合は人件費、減価償却費、施設更新関連費、ロイヤリティなども計上されていることに驚きました。一般企業では、人件費は販管費に計上されるため、この違いが印象的でした。 人件費の扱いはどう変わる? また、人件費の扱いに関して調べると、売上原価の製造費と販管費における販売費、一般管理費、研究開発費で分類されるのが一般的であることが分かりました。こうした知識を通して、財務3表の見方が変わり、各項目がどのような経営判断につながるかを考える良い機会となりました。 業界応用はどう考える? さらに、フレームワークを他の業界に応用する際には、顧客の特性や利用シーンなど具体的な側面に注目する必要があると感じました。売上原価と販管費の違いが粗利や営業利益にどのように影響を及ぼすかを理解することで、経営判断におけるコスト構造の分析にもつながると考えています。 実践での説明はどう進む? 今後は、この知識をもとに、実際の面談や決算報告の際に、事業活動とP/L、B/Sとの関連性を具体的に説明できるよう努めたいと思います。また、業界や同規模の企業との比較分析を通じて、より深い理解を得ることを目指しています。仕事以外では、複数の決算報告書を題材に事業活動を整理し、自分なりにP/LやB/Sを読み解く練習を続け、実際のお客様への説明機会も活用して理解をさらに深めていきたいと考えています。

クリティカルシンキング入門

分解のコツをつかむ!自ら動く学び方

「分解」とは何か? 物事を正しく理解するためには、「分解」が欠かせません。正しく分解するためには、「MECE(モレなくダブりなく)」な状態を維持することが重要です。「分解」は一見難しく思われるかもしれませんが、Who・What・When・Whereの視点で考えると、整理がしやすくなり、MECEの状態かどうかの判断も容易になります。 手を動かして得られるもの まずは実際に手を動かして「分解」を試してみましょう。仮に何も見えてこなかったとしても、それ自体に価値があります。「何も見えなかった」という事実を知ることも重要だからです。一工夫を加えながら手を動かし続けることが、「分解」するうえでの大切なプロセスです。 全体を定義する必要性は? 「分解」に着手する前には、必ず「全体」を定義し、それを周囲と共通認識とする必要があります。全体が定義されていないと、Aさんは2020年の顧客、Bさんは2021年の顧客というように、対象のズレが生じてしまいます。 分解が研修設計に役立つ理由 例えば、研修を設計する際にもこの方法が活用できます。「目的」を達成するために受講対象者という「全体」を定義し、Who・What・When・Whereの視点から分解していくことで、研修設計がスムーズに進みます。 売上予算管理でも「分解」は効果的 また、売上予算管理の場合、売上をどの要素が構成しているのかを分解し、チーム全体で共通認識を持つことが重要です。共通認識ができれば、予実差異を分析するときに問題の所在が分かりやすくなり、原因と対策の立案までのスピードが向上します。 議論が必要な場合の全体定義 議論が必要な場合、対象となる「全体」を定義してから話し合うことが重要です。問題が発生したときに、どこからどこまでの業務を対象とするのかを明確にしないと、議論が発散し収束しにくい傾向があります。 業務設計改善の出発点は? 売上を「分解」する際にも、事業部内で売上がどの要素で構成されているのかを洗い出し、チームの共通認識とすることが重要です。また、業務設計の改善においては、業務フローを書き出し、どの範囲を議論の対象にするのかを明確にするところから始めるべきです。

戦略思考入門

規模と範囲の経済性で未来を拓く

規模と範囲は何? 規模の経済性と範囲の経済性についての理解を深めました。 効果はどう現れる? 規模の経済性とは、生産量が増えるにつれて、1単位当たりの生産コストが低下する効果を指します。一方、範囲の経済性は異なる製品を同じ設備や人材で生産することにより、コストを削減できる効果です。これらの概念は企業が大規模化や事業多角化を考慮する際、メリットやシナジーを考える上で重要です。 例外はあるの? ただし、規模の経済性が当てはまらない場合もあります。例えば、生産量が過剰になると管理コストが増加したり、設備が老朽化して稼働率が低下したり、需要が限定的で大量生産のメリットが得られないこともあります。同様に、範囲の経済性についても、新製品のために新しい設備投資が必要だったり、新製品と既存製品に関連性がなかったりする場合には該当しません。 過剰は問題? つまり、規模や範囲を過剰に拡大すると、無駄なコストが発生し経営が非効率になる場合があります。そのため、需要動向や自社の経営資源を考慮し、適切な規模と範囲を見極めることが重要です。 効率はどう実現? 現在の部署では、実店舗のバックオフィス業務や間接業務の移管を受けており、その効率化と高品質化を進めています。100店舗で10工数かかる業務をただ1000工数で受け持つのではなく、習熟効果や自動化を活用して500、400と圧縮することで効率化を図っています。これからも規模の経済性を活かし効率化と高品質化を追求していきます。また、同じオフィス内で行うことで範囲の経済性も効かせられないか検討しています。 新たな提案のヒントは? 新規業務においては未知の領域に触れる機会が多くなり、顧客や競合他社も増えています。そこで、これまで学んできたフレームワークを活用できると感じています。新規業務の提案を行う際には、市場・競合・自社の情報整理を行い、顧客設定やゴール設定を明確にし、定量的な情報を基に説得力のある移管提案を目指します。 経験はどう重ねる? 現状では、フレームワークの有効な活用はもちろん、使用頻度もまだ不足しているため、まずは経験を積むことを重視して業務に取り組んでいきます。

アカウンティング入門

数字の裏側を読み解く学び

本業と全体はどう? PLには売上総利益、営業利益、経常利益といった項目があり、営業利益は本業で得られる利益を示す一方で、企業全体の収益性の判断には限界があることが理解できました。経常利益を見ることで、初めて企業全体の儲けを把握できるという点も納得できました。 PLから何が分かる? また、PL単体では細かい財務活動まで把握することは難しいものの、利益の出し方やコストが発生する時点、そして過去と比較して各割合がどのように変動しているかなど、全体的な売上・利益構造を大まかに捉えるための有用な指標であると感じました。たとえば、対照的なコンセプトを採用するカフェのPLを通して、弱みを他の部分の費用で補うという戦略があることを学びました。店舗が小さく、立地条件が厳しい場合、集客力を補うために広告宣伝費を多く割り当てる戦略が取られているという点は興味深かったです。ただし、PLだけではその背景にある出店経緯や戦略は把握できないため、併せて確認する必要があると感じました。 報告書はどう読む? 自社の利益報告書を読む際は、月単位や年単位での推移を丁寧に把握し、売上や利益の構造に変化がないか、儲けが増加しているのか減少しているのか、要因を明確にすることが大切だと考えています。 各店舗を比べる? さらに、業界の特性から、売上原価の比重が高い店舗と低い店舗が存在するため、各店舗の利益の出し方の違いを比較し、より効果的な利益向上策を模索する意欲が湧きました。自社内の各店舗のPLを詳細に比較することで、利益構造やコンセプトの違いが明確になり、そこから自社分析を経たうえで競合他社のPLも確認し、販管費や労務費、売上原価の占める割合の違いから、何を強みとして成長させ、どこに改善の余地があるかを検討することが求められると感じました。 改善提案は何? こうした分析を通じて、売上に対する各費目の割合や変化を正確に把握し、改善活動を次期の部門方針に反映させるとともに、管理側と店舗それぞれが取り組むべき課題を明確にする必要があると実感しました。自身の責任範囲内で具体的な改善提案を上司に示し、統括する店舗が改善活動に向けた大きな予算を確保できるよう検討していきたいと考えています。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

リーダーシップ・キャリアビジョン入門

社用車管理のエンパワメント成功術

エンパワメントとは何か? エンパワメントとは、メンバーが自律的に業務を遂行できるように促すリーダーシップの一つです。目標を設定して、その達成方法をメンバーの自主性に任せつつ、効果的な支援を行います。ただし、ミスが許されない仕事や納期が極端に短い仕事には向かない手法です。リーダーがメンバーをよく理解し、モチベーションやスキル、喜びを感じる要因を見極めることも重要です。人材育成という側面も忘れずに考慮する必要があります。 目標設定はなぜ重要? リーダーシップの実践における第2ステップは目標設定です。目標設定では、メンバーをそのプロセスに参加させることが重要で、問いかけを通じてメンバーの問題意識や関心を引き出し、発言を促すことでコミットメントを得ます。また、目標は具体的で定量的であるべきです。メンバーが優先順位をつけて行動しやすいような、測定可能な目標が望ましいです。その際、目標に意義を持たせることで、メンバーの使命感を引き出し、挑戦感を与えることも大切です。これはメンバーに少し高めの目標を与えることで実現します。 成果が出ない時の対処法は? しかし、目標設定をしてもメンバーがやる気を出さない場合は、それが理解不足なのか、実行不能なのか、意欲の欠如なのかを見極めて、適切な支援を行う必要があります。 総務業務に目標設定をどう活用する? 私の業務に関して言えば、総務業務における目標設定を活用できると感じています。今回は、社用車管理業務に注目します。総務の業務は組織方針において抽象的になることが多く、(例:従業員が働きやすい職場環境の改善)そのため、メンバーが業務を日常の一環と捉えてしまい、課題の改善に取り組む意欲を持ちにくいと感じています。 具体的に、25年度の社用車管理業務の目標設定を実施しようと考えています。関係するメンバーを集め、問題意識や関心点をブレインストーミングで出し合い、それを整理します。小さな問題やすぐ解決できる事案は日常業務として処理し、大きな解決策が必要なものや即座に解決策が出ないものを課題として取り上げ、目標設定を行います。目的の意義、定量的かつ具体的な内容、そして挑戦の要素を各メンバーに伝え、エンパワメントを活用します。

データ・アナリティクス入門

Whereが導く新たな学び

解決のステップは? 問題解決の4つのステップを意識することで、課題解決に向けた取り組みがより効率的になると感じました。今後は、最も重要なポイントである「Where」を意識して分析に着手していきたいと思います。業務においては、あるべき姿と現状とのギャップを、定量的な指標で示すことが大変有効だと印象に残りました。 総評はどう考える? 総評として、問題解決のステップを意識し、効率的なアプローチを追求する姿勢は素晴らしいと感じます。また、定量的な分析の重要性を理解している点も非常に大切だと思います。今後は、具体例を交えた検証により、さらに深い理解が得られるでしょう。 手法とデータは? さらに思考を深めるための問いとして、以下の点を考えてみてください。 ・問題の「Where」を意識する際、具体的にはどのような手法を用いる予定ですか? ・業務での定量的分析を強化するために、どのようなデータが必要だと考えますか? 今回学んだポイントを、実務に具体的にどのように応用するかもじっくり考えてみてほしいと思います。頑張ってください。 理想と現実は? また、「あるべき姿」と「現状」のギャップについては、①正しい状態に戻すための問題解決と、②ありたい姿に到達するための問題解決があると認識しました。たとえば、以下のようなケースが想定されます. ・売上販売目標の場合  → 100%達成に届かない状況と、120%達成を目指す状況がある ・製品シェアの内訳の場合  → シェア80%を目指す場合と、シェア100%を目指す場合がある ・KPI Activityの場合  → 会社の指標を順守する場合と、それを大きく上回る目標を設定する場合がある 比較で見極める? さらに、分析にあたっては「分析とは比較なり」という考え方も大切です。具体的には、社内の数字の良い組織や競合他社と比較することで、現状とあるべき姿を明確にすることが重要です. また、あるべき姿と現状は、定性的な情報だけでなく、定量的な情報としても示すことが重要です。定性情報を定量化するために、数値によるスコア化(たとえば0、1、3など)を統一した条件で設定する手法も有効だと感じました。

データ・アナリティクス入門

平均だけじゃ見えない真実

単純平均の落とし穴は? 単純平均は、ばらつきを見えにくくし、また外れ値により大きく値がぶれる可能性があります。そのため、何が適切な代表値であるかを十分に考慮した上で、比較や分析に臨むことが大切です。 標準偏差で何が分かる? 標準偏差に関しては、波の大小をイメージすることで、そこから導き出せる情報がわかりやすくなります。これにより、平均だけでは捉えきれないデータの分布の実態を理解しやすくなります。 年齢層の違いを把握するには? 具体的なデータセットを例に挙げると、例えば、ある組織の従業員の平均年齢が38歳の場合、全体は大まかに新卒5年未満、30代後半~40代初頭、60歳前後という3グループに分けることができます。単純な平均値だけではこれらの年齢層のばらつきを正確に反映できませんが、標準偏差を合わせて求めることで、年齢層の多様性をより具体的に把握し、組織の魅力としてアピールする材料とすることが可能です。 外れ値の影響は? また、外れ値がビジネス上の意思決定にどのように影響を与えるかという視点も重要です。たとえば、顧客ごとの売上金額を分析する際、1%程度の大口顧客の存在が全体の平均を引き上げてしまうと、実際の単価水準が正しく把握できなくなります。単純平均のみを頼りにすると、実態との差を見誤り、競合との比較でも課題が見えづらく、適切な方策に結び付けることが難しくなります。 多角的分析は有効? このような背景から、単に平均を算出するだけでなく、加重平均や中央値、そして標準偏差を併用することで、データのばらつきを把握し、その意味するところを考察する姿勢が重要だと改めて感じました。年度末のまとめや次年度への申し送りの際にも、前年や前々年との比較を行い、伸び率や減少率を幾何平均で求めるなど、より多角的な視点でデータを分析することが求められます。 データの可視化は? 計算式の意味を完全に理解していない部分もありますが、情報やデータが揃っているなら、まずは標準偏差を算出して、その意味合いを考えることから始めると良いでしょう。数字をただ並べた表だけでなく、ヒストグラムなどを用いてばらつきを可視化することが、まず第一歩だと感じています。

「場合」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right