データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

データ・アナリティクス入門

不安から自信へ変わる実践法

比較と伝え方は? データ分析においては、常に比較する姿勢を忘れず、大切なポイントだと実感しています。また、ビジュアル化する際には、これまで自身が慣れ親しんできたグラフだけでなく、伝えたい情報に最も適した表現方法を選ぶことを意識しています。 経験はどう活かす? 業務での分析経験があるため、実際の活用イメージは湧きやすいです。これまでは自己流で学んでいたため、考え方や手法に不安を感じることもありましたが、体系的に学ぶことで自信を持って活用できるようになりました。 仮説と検証は? 具体的には、まず仮説を立て、その後、比較対象を検討してバイアスを排除しつつデータを見るよう努めています。また、分析結果に関しては、担当者間でできる限り議論を重ね、さまざまな視点から検証することを心がけています。さらに、ビジュアル化の際は、誰が見ても正しく、わかりやすく伝えることを意識しています。

データ・アナリティクス入門

仮説と対話で生む新発見

仮説検証の工夫は? 仮説を立て、データで検証するプロセスは従来通り行っていますが、決め打ちにしない姿勢には驚きを覚えました。説得力を高めるために、反論を排除する情報に踏み込むことが重要であり、3Cや4Pなどの視点で網羅性を持たせる思考法も、仮説が浮かばないときには非常に有用だと感じました。 忙しさの中で何を考える? 忙しい状況下では、決め打ちの仮説からデータを作成し、仮説が合っているという安心感にとらわれがちです。しかし、まずは仕事にゆとりを持ち、反論が出ないまで情報を網羅的に検討することが大切だと改めて実感しました。 共に歩む協働は? また、データの加工作業を一人で行っていると手が回らなくなることが多いため、今後はチームで協働することを意識していきたいと思います。裁量権を活かしつつ、新年度からは担当部署の変更を検討し、より良い組織作りを目指していきたいです。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

デザイン思考入門

疑問から生まれるデザインの力

多様な視点が見えた? 同じテーマについて多様な視点が存在することを学びました。ユーザー目線で現状の仕組みが本当に適切かどうか検証する過程で、各メンバーが異なる観点から意見を述べるのが非常に印象的でした。また、デザイン思考に関しても、参加者それぞれの想いが交わり、ディスカッションが盛り上がった点がとても興味深かったです。 現状をどう問い直す? 現状に疑問を持つことの重要性を実感しました。従来の方法や制度がただ続いている理由だけで運用されている場合、それをユーザー目線で見直し、より使いやすい形に改善する必要があります。まずは現行制度の確認と再検討を行い、実際に受けた問い合わせや相談内容を反映させながら問題定義を進めることが大切です。さらに、可能な範囲で改善策を検討し、ロジックツリーなどの手法を用いて試行錯誤を重ねるプロセスが印象に残りました。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

新たな視点で未来を切り拓く

分析の目的は何? 分析の目的や検証したい仮説を明確にすることで、アウトプットの内容が大きく変わると感じました。いきなり分析に着手するのではなく、どの切り口を採用するかを検討することで、分析の精度が向上すると実感しています。 新たな視点はどう捉える? これまで、売上データの分析など同じ流れで進めてきた結果、似たようなアウトプットになっているという課題がありました。そのため、今後は新たな視点を導入し、自分自身やチームのメンバーが新しい気づきを得られるよう意識していきます。 バイアスをどう排除する? また、従来のバイアスをできる限り排除する分析手法と、その結果をチーム全体で共有する取り組みを進め、具体的な施策につなげられるよう努めていきたいと考えています。

データ・アナリティクス入門

探る仮説、見える可能性

仮説思考の意味は? 仮説思考の重要性について学びました。複数の仮説を立て、フレームを活用することで検証すべき論点を網羅的に整理できる点が印象的でした。仮説を証明するためのデータ収集では、支持するデータだけでなく、他の仮説を排除するための情報も集める必要があると理解しました。このプロセスにより、検証マインドが向上し、説得力が高まる好循環が生まれると感じました。 現場での工夫は? コンサルティングの現場では、プロジェクト開始時に既に大論点が明確な場合が多い中で、自ら複数の仮説を検討し、大論点を中論点や小論点に分解して検証ポイントを明確にする作業が求められます。また、上位者との壁打ちを通じて精度を高めることで、効率的な問題解決が実現できると実感しました。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

「検討 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right