データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

データ・アナリティクス入門

プロセス見直しで未来を切り拓く

どうやって原因究明? 原因を特定するためには、分析対象を複数のプロセスに分解し、各段階で明確な問題箇所を探ることが重要です。人の行動に即したプロセス設定を行うと、問題の箇所が特定された後の改善策の検討もスムーズに進むことが分かりました。 なぜ事前に決定すべき? また、What、Where、Why、Howといった基本的なステップと同様に、プロセスの設定も仮説検証に入る前に決め、その内容を関係者間でしっかりとすり合わせる必要があります。たとえば観光客の減少の原因を探る場合、ユーザーがどのように情報を収集し観光地を選んでいるかというプロセスと、現状で手に入っているデータがどの段階で取得されたものかを突き合わせることが求められます。 データ整理の要点は? さらに現状分析においては、最初に幅広いデータを集めることが大切です。各データが持つ性質や項目、定義について周知するとともに、ファネルに沿ってデータの分類や分析を進め、必要なデータの補完を行うといった段階的な準備が成功の鍵となります。

データ・アナリティクス入門

4P分析から学ぶ成功の秘訣

仮説はどう整理する? 仮説を立てる際は、単に思いつきで考えるのではなく、体系的なフレームワークを活用して漏れや重複がないように整理することが重要だと実感しました。また、一度仮説を設定したら、必ずその検証プロセスを設けることで、絞り込みを行い、課題に対する具体的なアクションにつなげる必要があります。 4P分析はどこが重要? さらに、4P分析は実務において非常に有用であると感じました。商品が期待通りに売れていない場合、4Pの各要素―Price(価格)、Product(製品)、Place(流通)、Promotion(販売促進)―を詳細に検証することで、問題の要因を明確にし、改善策を講じることが可能です。例えば、Priceの面では適正な価格設定を見直し、Productではお客様の評価や安全性、需給のバランスを確認します。Placeにおいては在庫状況や店舗への供給体制をチェックし、Promotionでは伝えたい内容が的確に伝わっているか、費用対効果や実施時期の妥当性を検討することが大切です。

クリティカルシンキング入門

問いが拓く学びの未来

問いの設定ってどう? 常に問いを立て、共有しながら進めることの重要性を改めて実感しました。プロジェクトの課題を議論する際に、まずは明確な問いを設定することが必要だと感じています。自分の考えを具体と抽象の間で行き来させ、多角的な視点から問いに答えることが、より納得感のある具体策の構築につながると思います。 戦略の現状を見極める? 現在、下期戦略の検討段階にあり、あるべき姿と現状との差を比較することで、課題(ISSUE)と対応策(打ち手)をセットで検証するアプローチが効果的ではないかと考えています。チームメンバーともクリティカルシンキングの考え方を共有しながら、どの打ち手が本当に有効かを慎重に検討していくつもりです。 問いメモの習慣は? また、議論の場や面談の際には、必ず「問い」をメモする習慣を徹底したいと思います。日頃のコミュニケーションにおいても、一旦立ち止まってその場の勢いで答えず、3つの視点を取り入れて回答することを心がけることで、より充実した議論ができると感じています。

データ・アナリティクス入門

ABテストで成果を生むコツと課題

問題の原因をどう探る? 問題の原因を探るためには、まずプロセスを整理し、どの部分に課題があるのかを特定することが重要です。複数の仮説を立てて、それぞれの解決策を丁寧に検討する必要があります。ABテストは、少ない工数で低リスクに検証ができるため、おすすめの方法です。 ABテストの利点と課題は? 今回のテーマは自分の日常業務に近かったため、より理解が深まりました。ABテストについては、各媒体がAIで最適化するケースが増えており、実施が容易になっている一方で、「なぜこちらの方が成績が良いのか?」といった点が理解しにくくなり、次回に活かすのが難しいと感じます。 重要な視点をどのように意識する? 重要なのは、What、Where、Why、Howの視点を意識することです。ついついHowの検討に集中してしまいがちですが、プロセスを分解し、仮説を立てる手順を怠らないようにしたいです。また、仮説を立てるためには内部・外部の両面からの知識が必要ですので、情報収集の重要性も再認識しました。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

クリティカルシンキング入門

論理で拓く成長の道

なぜ系統分解する? 問題解決にあたっては、主観的な判断を極力排除し、各要素を系統的に分解する手法が重要であると学びました。MECEの考え方を参考に、まずはトレーニングを重ねながら、必要な要素を網羅的に整理する力を身につけたいと考えています。 どの角度で検証する? また、IT分野でのシステム設計や事後分析においては、目的や問題点を明確にし、多角的に分析する姿勢が求められると感じました。どの角度から、どのレベルまで検討するかを意識することで、より高い品質のアウトプットを実現できると実感しています。さらに、クリティカルシンキングの向上には継続的なトレーニングが不可欠であり、ビジネスシーンにおいても振り返りの時間を大切にすべきだと思いました。 自己評価はどう? 今後は、本コースで学んだ思考方法を活かし、過去の問題分析を振り返る中で、自分のアプローチが主観的になっていないか、また適切なレベルまで検証できたかを再評価し、次回以降のタスクに役立てていきたいと考えています。

データ・アナリティクス入門

自分の視点で挑む数字の世界

数字の裏を見る? 数字をただ眺めるだけでなく、何を調べたいのか、どの点が重要かを事前に考える習慣が身についたと感じています。事前にどのようなデータが必要か、どんな情報がありそうかを予測し、仮説を立てることの大切さを、実際の分析を通じて実感できました。 売上の謎は? また、売上の上昇や下降といった大枠だけを把握した後、次のステップとして自ら仮説を立て、複数のデータを組み合わせて検証する練習にも取り組んでいます。データ分析専門のチームが示す資料をそのまま受け入れるのではなく、自己の視点でデータを比較検討することに注力しています。 実践の手順は? 具体的には、以下の手順で実践しています: ① 週明けに発表される週次予約情報や売上実績を前週と比較し、自分なりの考察を深める。 ② 得たデータを企画書に盛り込み、提出する。 ③ これらの実践にあたり、必要なデータの提供をデータ分析チームに依頼してみる。 これらの取り組みを通じ、分析力の向上を実感できています。

データ・アナリティクス入門

仮説が未来を切り拓く瞬間

仮説はどう広げる? 何も無いところから仮説を立てるのは難しいため、3Cや4Pなどのフレームワークを活用することで、仮説の幅を広げることができます。例えば、3Cでは市場分析、競合分析、自社分析の視点から検討し、4Pでは製品、価格、流通、プロモーションの各要素に注目します。 提案はどう整理する? 得意先へのマーケティング施策の提案においては、これらのフレームワークに沿って仮説を整理することが重要です。得意先からのヒアリング内容も3Cや4Pの枠組みに落とし込みながら分析することで、より論理的かつ具体的な提案が可能となります。また、机上の空論にならないよう、仮説の根拠を明確にし、確実な情報に基づいて絞り込んでいくプロセスが求められます。 客観性はどう測る? 一方で、どうしても仮説が自分の思い込みに左右される場合は、客観的なデータに基づいて検証することが効果的です。信頼性のある資料や第三者の意見を取り入れながら、自己の偏りを減らし、仮説の精度を高める努力が必要です。

アカウンティング入門

仮説で読み解く利益の秘密

利益の把握はどうなってる? 本業での利益、財務活動後の利益、最終利益といった各利益の数字を通して、経営全体の状態や借金の負担状況などが把握できることを学びました。また、仮説を立て検証するプロセスを通じて、物事をより深く掘り下げることができると実感し、今後は仮説立案の習慣を身に付けたいと思います。さらに、「PL=運動成績表」という表現が非常にしっくりと感じられました。 検証はどのように進む? 具体的には、子会社のPLの変化について自ら仮説を立て、各利益の動向を前月比や前年比で分析、検証していくことを目指します。また、同業他社の比較を通じて、各利益率の違いの背景にある要因を探り、その特徴を明らかにできるようになりたいと考えています。まずは、検証のために用いる分析指標について検討し、同業他社のWEBページに記載されている財務指標を参考に、各社がどの指標に重点を置いているのかを確認。自社との比較を行い、問題点を明確にして改善案の検討につなげていきたいと考えています。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。
AIコーチング導線バナー

「検討 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right