データ・アナリティクス入門

仮説から始まる発見の物語

なぜ振り返りするの? これまでの学びを総まとめする中で、問題解決のステップと仮説志向の重要性を再認識しました。一見当たり前に感じることも、改めて意識することで新たな発見があると実感しています。また、他の受講生の意見に触れることで、自分のアプローチに不足している部分を確認することができました。 有意な検証方法は? もともとの課題として、A/Bテストにおいて有意差が出る仮説を立案する必要があるため、「要素は一つ」「同じ期間で同時に」という基本に加え、仮説を明確にすることを意識したいと考えています。そのため、フレームワークを活用して仮説の幅を広げる取り組みも進めています。 効果的な施策は? さらに、自分が実施するキャンペーンにおいて、コンバージョン向上のために検証すべき仮説をフレームワークを使って洗い出し、その中で最も効果が見込める仮説をもとにキャンペーンを実行・検証するサイクルを繰り返していくことが今後の課題です。

データ・アナリティクス入門

比較で見つけた戦略のヒント

同条件で比較する? 分析とは、同じ条件下での比較を行うことだと思います。たとえば、「Apple to Apple」の視点で比較を行うことで、分析の目的やゴールが明確になり、結果の精度も向上します。また、分析を進める際は、仮説を立てることで、目的外の迷いに陥らずに進められると感じています。 ブランディングはどう? 現在、私はプロダクト開発とコンテンツ企画・運営に携わっており、いずれも競合が存在する中で、自社のブランディング戦略を考える必要があります。ただ、現状ではプロジェクトオーナーの感覚や経験に頼る部分があり、より現実的かつ客観的な視点を取り入れる余地があると感じました。 課題整理は進んでる? そこで、まずは各プロジェクトの目的とゴールを再整理し、現時点での課題を明確にすることが重要だと考えています。その上で、適切なフレームワークやツールを活用した分析を行い、より精度の高い戦略策定を目指していきたいと思います。

データ・アナリティクス入門

復習と分析で磨く未来のスキル

授業で何が足りた? ライブ授業を通して、学んだ内容が実際には抜け落ちていると感じることがありました。日常にうまく落とし込めず、知識が血肉になっていないため、再度復習する必要性を強く感じています。一方で、学習初期から具体的な指針があったおかげで、課題に対して何をすべきかが明確になり、その成長を実感できた面もあります。 分析で自信は得られた? また、採用状況の分析は、初めから取り組んできたこともあり、これまでの経験が自信につながっています。繰り返し実践する中で、数字を扱う技術をさらに磨けると感じており、新たなデータにも積極的に取り組みたいと考えています。 異動後の数字はどう変わる? この春に異動があり、新しい職場でどのような数字に触れることになるのかはまだ不明ですが、現職場ではこれまでの分析手法がレガシーとして共有されています。新たな環境でも、数字を扱うスキルを引き続き活かし、積極的に取り組んでいきたいと思います。

クリティカルシンキング入門

MECEで広がる分析の世界

分析計画の狙いは? MECEを意識して分析計画を立てることの重要性について学びました。分析はまず大局的な視点から始めることが大切です。傾向を掴んだとしても、それが必ずしも正しいとは限りません。そのため、正確性を確認するために、必要に応じてさらに詳細に分解する必要があると感じています。 分解の意味は何? 実際に行っているデータ分析について考えたところ、MECEを満たしているようではあったものの、それを意識的に行うことはできていませんでした。分析のスタートポイントとして分解を意識して、分析計画を立てる必要があると強く感じました。 感覚分析の問題点は? これまでの分析は感覚的に行っていた部分がありました。分析計画は立てていましたが、分解に着目するということが不足していました。解がスタート地点であることを学んだので、今後は分析計画の段階で、MECEなど今回学んだロジックに沿って計画が立てられているかを確認していきます。

戦略思考入門

「やめる勇気が業務を進化させる」

業務見直しの必要は? 現在の業務を冷静に見直すことで、戦略的にやめることや捨てることの必要性を学びました。何かをやめる際にはデメリット、特に顧客からの反発を懸念しがちです。しかし、様々な角度からメリットとデメリットを分析し、総合的に判断することが重要であると感じました。 顧客サービスの見直しは? 自分の業務や自組織の業務において、今回学んだ視点から見直すべき業務は多く存在します。特に、売上につながらない対顧客サービスについては、疑問を持たずに当たり前に行ってしまっていることが多いです。そのため、見直してやめる判断ができるのではないかと感じています。 議論の進め方は? まずはやめる候補の業務を洗い出し、それらのメリットとデメリットを冷静に書き出してみたいと思います。その後、書き出した内容を職場のメンバーと共に議論し、抜け漏れがないか、また組織全体で見たときにどう変化するのかを確認していきたいと考えています。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

戦略思考入門

不要なものを捨て、本質を掴む

判断軸はどう整える? 「捨てる」力を身につけるためには、思考を停止させることなく、常に現状の最適解を意識することが大切だと学びました。業務の中で優先順位を考える場面は数多くありますが、投資や時間に対する費用対効果の視点をしっかりと取り入れ、自分自身の判断の軸を築いておくことが重要です。そして、その判断軸を周囲にわかりやすく整理して伝えることで、納得を得ながら業務を推進できると感じています。 本当に必要な報告は? また、定例ミーティングや定期報告、報告資料の中で不要なページや内容が含まれていないかという視点を常に持ち、業務の中に存在する「実は省略しても良い内容」がないかをチェックすることも意識しています。そもそもその業務や内容は、誰のために何のために行われているのかを5W1Hの視点で見直し、現状と照らし合わせながら本当に必要なものかどうかを判断しています。不要と判断した内容は、その旨を速やかに提案するように努めています。

データ・アナリティクス入門

方向を見失わないための「What」の重要性

重要なのは「What」か? 仕事をしていると、「What」がないのに「How」ばかりがある状況に直面することが多いです。自分にもチーム全体にも、「What」を考える時間を重視する習慣を身につけたいと感じました。アイディアを出すのは楽しいですが、「What」がなければ方向性がぶれてしまうためです。 新規事業の存在意義は? 現在取り組んでいる新規事業においては、まず「何のために?」という部分に立ち返り、事業の存在意義自体を見直す必要があります。この事業は「What」無しに発足してしまったため、事業計画の見直しや販促計画の策定においてもその点を重視したいと思います。 ロジックツリーをどう活用する? 具体的には、ロジックツリーを作成し、もれなくぶれなく、汚く早くを実現する手法として活用します。社内には要素分解が得意で、ロジックツリーを使って思考を展開し成果を出している社員がいるので、その人をロールモデルにします。

データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

マーケティング入門

本音で伝える学びの軌跡

顧客の本質は何? 顧客の真のニーズは、表面的な関わりだけでは捉えきれず、より深堀りする必要があります。ウォンツとニーズの違いを明確に区別し、顧客が本当に求める解決策を見極めることが大切です。特に、ウォンツは競合他社も取り組みやすく、価格競争に陥りがちであるため、顧客の根本的な問題点―ペインポイントを整理し、自社の強みと掛け合わせた具体的な提案が求められます。 現状の課題は何? また、クライアントが感じる「ムリ・ムダ・苦しい」という状況を整理するために、デプスインタビューや現場での行動観察などを活用し、実際の状況を詳しく把握します。同時に、自社のストロングポイントを整理することで、大きなペインポイントに対する効果的な解決策を明らかにしていくことが重要です。 印象に残る提案は? さらに、クライアントにとって想起しやすいネーミングを工夫することで、提案する解決策がより一層印象に残るように努めるべきです。

データ・アナリティクス入門

全体をとらえるデータの物語

全体像と仮説の関係は? データ分析に取り組む際、単にあらゆる情報をむやみに収集するのではなく、全体のストーリーを大切にすることが印象に残りました。アウトプットのイメージを持ってデータ収集を行うと、目的に沿った情報が得やすく、分析の方向性も明確になります。また、仮説を立てる際には、フレームワークを活用することで多角的な視点から仮説を検討できますが、その検証に必要なデータは個々のアプローチによって異なるため、どの視点から何を分析するのか、目的を明確にすることが重要であると感じました。 データ収集のポイントは? 現場でデータを収集する方法として、アンケート調査やヒアリングが主な手法として挙げられます。アンケート項目を作成する際には、その趣旨を明確にし、複数の仮説と全体のストーリーに沿った質問を工夫することが求められます。こうした意識を持って、目的に合った質問項目を作成し、データ収集に臨むことが重要であると考えています。

クリティカルシンキング入門

数字の謎解きが開く成長の扉

目的は何だろう? 目的に応じて分析方法が変わるため、まず目的を明確にすることが重要だと感じています。数字の分解は、複数のパターンで行うことで真因を把握できるため、分解した結果を目的と照らし合わせながら検証していくことが必要です。また、漏れがないようにMECEの視点を取り入れたいと考えています。 営業戦略、どう立てる? 私は営業チームの責任者として、顧客や担当者による偏りが大きい現状を実感しています。顧客ごとにリピートの可能性、規模、件数、金額などが異なるため、今後の営業戦略に分析結果を活用していく予定です。加えて、顧客満足度の向上を目的に、アンケート調査も実施していくことにしました。 人間の役割は何? DXの進展により、AIやIoTの活用で効率化が進む一方で、最終的な分析や確認は人間が行う必要がある点も重視しています。どのようなシーンでこれらの取り組みが活用されるのか、皆さんの意見を聞いてみたいと思います。
AIコーチング導線バナー

「必要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right