クリティカルシンキング入門

問題解決の全体像に迫る 分解の力

物事の分解で何が見えてくる? 物事を分解することで問題の特定や後続の対策が立てやすくなると感じました。特に、目的を意識しながらどのように分解すれば感度良く対応できるかを最初に考えることが重要です。 問題解決の4ステップとは? 問題解決のステップとしては、What→Where→Why→Howの順番を意識することが大切です。しかし、実際にはいきなりWhyやHowに進んでしまう場面もよく見かけます。この点を改善することで、より効果的な問題解決が可能となるでしょう。 トレンド分解にはどんな方法が? トレンドを分解する際には層別分解が役に立ちますが、データを活用した商品企画に適用する場合にはプロセス分解が求められます。プロセス分解では具体的に何をしているのか、何を決めるのかを明確にしなければ、「入店」や「着席」といった単純な分け方になりがちです。 チームサポートに必要な視点は? また、チームメンバーが困っていることや解決すべき課題を見据えた上で整理のアドバイスをしていくことが必要です。プロセスで困っているのか、情報の捉え方で困っているのかを見極めることがポイントです。 売上分析に層別を活用するには? 売上についても触れるシーンがあるため、層別や変数別の考え方を忘れずに、定期的に使ってみることが求められます。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

データ・アナリティクス入門

目的意識で未来を切り拓く

学習前の心構えは? まず、学習に入る前に心構えをしっかり持つ時間が取れたことが非常に有意義でした。データ分析の授業でも触れられていた「目的地」の重要性に気づかされ、目的を定めずに学習を進めると、行き当たりばったりになってしまい、自分が本来得たい知識が得られないという現実を改めて実感しました。 分析手段の真意は? また、データ分析は単なる分析そのものが目的ではなく、目的を実現するための手段であり、その手段を用いて仮説を立てることが本質であるという点も認識できました。目的意識を明確に持って初めて、必要なデータの抽出やその後の分析が効果的に行えるのだと理解しました。 売上報告にどう活かす? この学びを、毎月作成している売上の月次レポートに活かしていきたいと考えています。売上報告では、現状の振り返りを通じて得られる情報を整理し発信しています。月ごとに売上は変動し、好調な時もあれば不調な時もあるため、どの要素に着目すべきかを明確にし、良い状態を維持するための具体的な目的を掲げる必要性を感じました。 具体的には、全体の売上維持や増加という大目標に対して、注目すべき項目を検討し、その項目に関連するデータを抽出します。そして、期間中のデータを元に仮説を立て、その仮説をチームに提示するというプロセスを実践していく予定です。

データ・アナリティクス入門

仮説で突き抜ける分析の世界

分析の基本を確認? この講座では、分析とは単にデータをそのまま受け入れるのではなく、要素を分類し比較する作業であることを学びました。現状を鵜呑みにするのではなく、多角的に考え、目的や仮説を明確に持って取り組む重要性が印象に残りました。 分類と比較の仕方は? 具体的には、まず分析の基本として、データを分類することが必要だと再認識しました。そして、その分類された情報を比較することで、より深い理解が得られると感じました。さらに、明確な目的や仮説を持つことで、分析の取り組み方が一層意識的になり、有益な示唆が得られる可能性が高まると実感しました。 実務での分析戦略は? また、現職の業務においては、クライアント向けのマーケティング戦略を立案する際、膨大なデータの中から適切な視点を見出し、効果的な分析を行うことが求められます。目的や仮説を明確に持ちながら、意識的な比較検証を進めていくことで、売上に貢献できるような分析手法を確立していきたいと考えています。 着眼点を模索中? さらに、与えられたデータのどの部分に着目すべきか、どの分析手法を適用すべきかについては、まだ模索している部分もあります。今後は、理論を学びながら実務に直結する知識やスキルを身につけ、より具体的な分析ができるよう努力していきたいと思います。

データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

アカウンティング入門

アカウンティングで高める企画力と報告力

アカウンティングの新視点は? アカウンティングという言葉は、元々「説明する」という意味を持つことを知り、一つの新たな視点を得ました。特に説明を行う際には、定性的な情報ではなく定量的なデータが重要であることを学びました。また、毎月作成している月次報告書がどのような意義を持っているのかについても理解が深まりました。 財務分析の実感は? 財務諸表を読み解けるようになることで、企業の活動がどれだけ上手くいっているのかを判断する能力が身につくと感じています。ただし、これはある程度の経験や慣れが必要であるとも実感しています。 提案方法のヒントは? 今後、企画や新しいテーマを提案する際には、アカウンティングの考え方を取り入れていきたいと思います。具体的には、説明資料を作成するときに、この視点を盛り込む方法を模索しようと考えています。また、月次報告書や半期の成果報告においてもアカウンティングの概念を活用し、報告内容を適切に判断する力を養いたいと思っています。 知識吸収の工夫は? さらに、本や他の資料からもアカウンティングに関する知識を積極的に吸収し、実務に生かしていくつもりです。上司や関係者がどのような報告を期待しているのかを考慮することにより、より質の高い報告・説明を心がけたいと思います。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

クリティカルシンキング入門

逆算で切り拓く新しい視点

切り口はどう考える? 学習を通して、分解の切り口として層別分解、変数分解、プロセス分解という多角的なアプローチを学びました。これまでは無意識のうちに層別分解を利用することが多かったものの、特に「When/Who/How」という視点を取り入れることで、さらに選択肢が広がり、得たい結果から逆算して適切な切り口を選ぶ重要性を改めて実感しました。 人事分析の視点は? また、人事領域で従業員データを分析する際にも、学んだ考え方が幅広く応用できることを感じました。入社者・退職者の動向や部署ごとの人数推移の分析において、年齢層、入社区分、性別、入社年度、居住地エリアなど「When/Who/How」の各視点でデータを整理することで、より具体的な傾向が見えてくると考えています。さらに、情報を収集する際には、過去の履歴の蓄積がいかに重要かを再認識し、全社的な情報収集の体制の見直しが必要だという点も学びました。 退職率の焦点は? 加えて、近年増加傾向にある退職者についても、特に若年層の離職率の高さという課題に着目し、年代別のデータ比較や、離職率が高いとされる入社3年目までという特定期間を切り口に、多角的な分析を実施していく方針です。これにより、より精緻な人事戦略の立案に役立てていきたいと考えています。

デザイン思考入門

共感で紡ぐ課題解決の瞬間

どうやって本質を見抜く? 業務でデータ活用を推進する中、ユーザーの困りごとをヒアリングする機会がありました。慣れ親しんだ業務に没頭していると、ユーザー自身が困りごとに気づいていない場合があるため、共感をもって話を聞くことで本質的な課題を浮き彫りにすることができました。 なぜ議論は広がる? 共感を通じて相手が話しやすくなると、本来の課題を見出すことができる一方で、深く話を聞けば聞くほどさまざまな課題が表面化し、議論が広がりすぎることもありました。この経験から、目的を常に明確にしながら、ユーザーの「困りごと」を丁寧に整理していくことの重要性を痛感しました。単に話を聞くだけでなく、どこに本当に困っているのかを正しく理解し、課題を構造的にまとめるスキルが求められると感じています。 今後の対策は何? 今後は、共感と整理の両輪を意識し、言葉を丁寧に整えることで、相手の気づきを引き出し、より良い解決につなげたいと思います。 何を学び実践? 今日の学びは、「共感」と「整理」のバランスが重要であるということです。相手の話に耳を傾け信頼関係を築くと同時に、目的を見失わずに情報を整理する視点を持つことで、ユーザーの困りごとを深く理解し、言語化および構造化する力をさらに磨いていきたいと考えています。

「情報 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right