アカウンティング入門

数字が語る事業活動の秘密

なぜ数字は物語る? Week1を通じて、アカウンティングは単なる数字の整理ではなく、事業活動を説明するための言語であると再認識しました。以前は財務三表の構造自体は理解していたものの、そこに表れる数字がどのような活動の結果として生じているのか、その意味合いに十分な注意を払ってこなかったことに気づきました。 定量と定性はどう? また、財務データという定量情報と、事業活動の実態という定性情報を行き来しながら読み解く思考の重要性を実感しました。この往復的な思考を通じ、企業の意思決定や価値創出のプロセスをより立体的に捉えられるようになると感じています。 財務を再読する理由は? 今回の学びを踏まえ、まずは自社の財務諸表を改めて読み直し、数字の背後にある具体的な事業活動をイメージできるかを確認したいと考えています。売上や利益などの結果だけでなく、どのような価値提供や経営資源の使い方がその数字につながっているのかを自分なりに言語化して整理することが第一歩です。 数値で議論は進む? さらに、労使協議や社内議論の場面では、財務データから読み取れる傾向や背景を整理し、定量と定性の双方を踏まえた見立てができるよう努めたいと思います。特に、収益構造や投資の方向性を客観的に把握することで、交渉や意見交換の質を向上させることを意識しています。 なぜ定期チェックする? 今後は、四半期ごとに自社の財務諸表をチェックする習慣をつけ、数字と事業活動の結びつきをさらに明確にし、思考の精度を継続的に高めていく予定です。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

クリティカルシンキング入門

クリティカル思考で切り拓く未来

情報分析はどう進化? 論理的に情報を分析する方法を学び、情報を体系的に整理しながらその信憑性や関連性を評価する力が向上しました。これにより、正確な結論を導く基盤が整い、今後も業務の場面で役立てたいと考えています。 質問で何が深まる? また、適切な質問を行うことで、情報をさらに深掘りする力が養われました。さらに、複雑な問題に直面した際には、クリティカルシンキングを用いて効果的な解決策を見出すことができるようになりました。 日常業務の改善は? 今後の日常業務では、以下の点を意識して知識を活用していきます。まず、プロジェクトの進捗や市場動向を正確に把握するため、情報収集の際には信頼性や関連性を重視してデータを整理し、効果的な意思決定に繋げます。さらに、業務上の問題に対してはクリティカルシンキングで根本原因を特定し、創造的かつ実行可能な解決策を導入していきます。 具体的な取り組みとして、以下の習慣を実践していく予定です。 ・情報収集と分析の習慣化:   ✓ 日常業務で必要な情報を収集する際、信頼性や関連性を意識してデータを整理する   ✓ 分析した情報をもとに、定期的に報告書やプレゼンテーションを作成し、意思決定に役立てる ・フィードバックの活用と自己改善:   ✓ 定期的に上司や同僚からフィードバックを受け、自身の業務の進め方を振り返る   ✓ 改善点を明確にし、具体的な改善計画を立て、次の業務に活かす 以上の学びを活かし、今後の業務改善と効率向上に繋げていきたいと考えています。

クリティカルシンキング入門

分析をさらに深める視点の大切さ

結論の正当性は? ≪総評≫ 分析をさらに掘り下げることや、さまざまな視点からの分析を行うことで、新たな傾向が見えてきました。結論が出たらそれで終わるのではなく、その結論が本当に正しいのか、さまざまな観点から検証を続けることが真の分析結果につながると感じました。分析の際には、常に他に軸がないかという疑問を持ちたいと思います。また、抜け漏れを防ぐためにMECEを活用していこうと思います。 数値の真意は? ≪数値分析で感じたこと≫ 売り手が持っている情報を基にした分析は、どうしても売り手の視点に偏りがちです。また、年代を18歳まで、22歳までというように、高校生や大学生で区切る視点は、これまで考えたことがありませんでした。 顧客の声は何? 顧客へのアンケートを担当しているので、項目の見直しや分析の深堀りを行い、さまざまな視点から再評価して新たな気付きが得られないか試みてみます。さらに、施策の費用対効果をまとめたデータも管理しているため、こちらもグラフ化して視覚的に捉えられるようにし、他の観点がないか再分析を行いたいと思っています。 次の一手は? 今後の主な取り組みとしては、①アンケートの項目精査と分析、②費用対効果データの見直しの二点となり、今週中に着手したいと考えています。アンケートについては、社内の締切を11月中と設定しているので、適切に実施できる見込みです。費用対効果データの見直しも月次で報告しているため、10月の分析結果をまとめる際に、学んだことを活かしていきます。

データ・アナリティクス入門

仮説が導く多角的学びの扉

仮説はどう考える? 仮説を考える際は、決め打ちにせずに複数の視点から仮説を立てることが大切です。仮説同士に網羅性を持たせるため、異なる切り口で検討を行い、検証時には何を比較基準にするかを意識的に選ぶようにしましょう。 データはどう集める? データを収集する際には、対象者が意味のある情報源であるか、またどのような方法(アンケート、口頭など)で情報を得るのかを考慮してください。比較対象となるデータを収集することを忘れず、都合の良い情報だけでなく、反論となる情報も取り入れて検証するように意識します。 仮説はどう分類? 仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大きく分類され、時間軸(過去・未来・将来)によってその中身は変わっていきます。 過去データで発見? たとえば、過去に掲載していた販売サイトのアクセス数やコンバージョン率を再確認することで、当時気づかなかった新たな発見が得られるかもしれません。担当していなかった時期のデータでも、改めて見返すことで仮説を生み出す練習ができます。また、メールマガジンのクリック率や流入ページ、ページビュー数なども注目すべき指標です。 多角的検討は必要? これまで、思いついた仮説に合致する情報を優先的に探していたかもしれませんが、仮説が決め打ちにならないよう、複数の視点から網羅的に検討する意識が求められます。What、Where、Why、Howの各要素に落とし込んだうえで、プロセス通りに漏れなく検討していくことを心がけましょう。

クリティカルシンキング入門

振り返りで変わる私の未来

文章はどう伝える? 相手に伝わる文章や資料作成においては、ただ情報を羅列するのではなく、読み手がすぐに理解できるよう、整理された構造と流れを意識することが大切だと学びました。単なる数字や文字の羅列ではなく、必要な情報が一目でわかるように、無駄な言葉を省きつつ具体的な内容を盛り込むことが求められます。 図表はどう活かす? 資料作成では、グラフや図表を効果的に用いるため、まずは単体の数値やデータに適切な単位の記載を行い、その後、データの性質に応じたグラフ(時系列データならば棒グラフ、変化を示す場合は折れ線グラフ、要素ごとのデータなら横グラフ)を利用して全体を俯瞰できるように工夫します。また、フォントや色、アイコン、強調表現の使い分けにより、伝えたいポイントと図表の整合性を持たせることも重要です。 メールはどう構成? メール文章については、結論を最初に示すとともに、題名や書き出しに相手の興味を引く工夫を施し、リード文から注意を引く構成にすることが大切です。文章全体も項目分けや箇条書きを取り入れ、情報を整理して分かりやすく伝えるよう努めています。 学びをどう確認? これまで学んだ数字の分析や日本語表現の技法、資料作成のポイントを振り返り、デスクトップにまとめた内容を常に確認しながら業務に取り組むことが、効果的な資料作成への近道であると感じています。完成した資料は、まるで「もう1人の自分」がチェックしているかのように、全体の整合性や論理性を見渡して仕上げることを心掛けています。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。

クリティカルシンキング入門

グラフで魅せる!伝わる資料作り

グラフの基本って? 今回の学びで最も印象に残ったのは、表をグラフ化するだけで情報が格段にわかりやすくなるという基本の重要性を再認識できた点です。グラフを活用した資料作成では、タイトルを明確に設け、説明の流れに沿った構成にすることで、読み手の理解が促進されることが分かりました。 グラフ選びはどう? また、グラフ選択においては、何を伝えたいかを明確にし、それに適した種類を使用することが重要だと感じました。場合によっては、複数のデータを一つのグラフにまとめることで、価値の高い資料を作成できるという新たな気付きも得ました。 文章作りはどう? 文章作成については、単なる情報の列挙ではなく、興味を引くタイトルを設定し、結論や伝えたいポイントを冒頭に置くことで、読み手の関心を引きつけ本文へスムーズに導く工夫が効果的であると実感しました。 内部メールの課題は? 私の業務では、社内向けメールの作成が多く、これまで「伝えたい思いが先走り長文になってしまう」や「案内内容を理解してもらえず後から質問が出る」といった課題に直面していました。今回の学びを通じ、以下の点を徹底することにします。 改善策は何? まず、興味を引くタイトルの設定です。次に、要点を冒頭に明記し、読みやすい体裁を整えること。そして、相手に応じた表現を選び、確実に伝わるメールを心がけることです。さらに、必要に応じて図や簡単なグラフを添えることで、情報を視覚的に理解しやすい資料作りにも取り組んでいきたいと考えています。

クリティカルシンキング入門

グラフデザインで変わる!伝わる資料作り

グラフ選びは正解? グラフの見せ方において、題名や単位などの細かい部分を記載することで、相手にとって見やすくなり、目的に応じたグラフ選びが必要であることが分かりました。また、文字の色やフォントによって印象が大きく変化するので、TPOや内容に合わせたデザインにすることで、相手への読みやすさや伝わりやすさが向上すると感じました。スライドでは、さまざまなグラフを使うよりも、シンプルに一つにまとめる方が、読み手の注意を集中させやすいことが理解できました。 カテゴリ毎の工夫は? 売上などをまとめる際には、カテゴリごとにグラフを活用したいです。データの時系列、経緯、要素がどれに適しているかは、改善したい目的によって変わると思うので、初めはさまざまなグラフを試して、最適なものを見つけたいです。スライドを作成する際は、目的に応じてフォントや色を調整し、強調したい部分が派手になりすぎないよう配慮したいです。 分析で何を掴む? また、売上データのどの部分を確認し、何を分析して改善するべきかを、グラフを使って言葉で説明できるようにしたいです。そのためには、自分自身でデータを分析し、必要な情報を精査していきたいと思います。スライド作成時には、常に相手の視点に立ち、初めて見る人でも分かるように、フォントや文字、グラフを選定していきたいです。特に、どのような印象を与えたいのか、どのような意識を持ってほしいのかを考え、人の心理に働きかけられるように試行錯誤しながら練習していきたいと思います。

データ・アナリティクス入門

データ分析で未来を切り拓くために

データ分析の目的を見直す データ分析の手法として、データの収集、加工、そして発見に焦点が当たりがちですが、何のためにデータ分析を行うのか、その目的が最も重要だと認識しました。そのために必要なデータ項目を選定し、それに基づいてデータを収集する習慣や仕組みを作る必要があります。ただ業務をこなすだけでは、将来に向けた効果的な分析ができず、特に自社の業務データはインターネットで入手できないため、自社内での心がけが欠かせません。 本当の売上分析とは? 私の業務では、データを集計して資料に記載することで終わることが多く、本来の意味での分析に至っていないと感じました。自部門の売上高を集計することが多いのですが、他部門との比較を通じて本当の意味での売上分析を行う必要があり、もっとオープンな視点での比較を考える必要があります。また、落札情報などを蓄積し、市場の相場観も併せて分析することが求められています。 有用なデータの収集方法とは? 現在、社内では中期経営計画の策定時期が来ており、過去の売上や競合他社の状況、他部門との比較を行いながら、データ分析を活用したいと考えています。しかし、データが社内に散在しており、有用なデータが収集しにくいという課題があります。そのため、将来を見据えてどのようなデータが必要かを社内で議論し、データ分析がしっかりと根付く職場環境を作りたいと思います。データを蓄積するためのフォーマットを作成し、社内メンバーがそれを保管・活用できる仕組み作りも進めていきたいです。
AIコーチング導線バナー

「情報 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right