データ・アナリティクス入門

なぜ?を突き詰める実践の知恵

原因の深掘りは? トヨタ式「5 Why」を活用し、表面的な原因だけにとどまらず根本原因へと掘り下げる手法が、知識としてだけでなく実践の糸口となった点が印象に残りました。 複数策はどう? また、解決策の検討では、一案に固執せず複数の選択肢を洗い出し、データや定性情報をもとに実現可能性・効果・コストを比較するプロセスがとても参考になりました。さらに、A/Bテストを活用することで条件を統一しながら柔軟に施策を検証していく方法も有効だと感じました。 本質を見抜く? 総合演習を通じて、データを多角的な視点―性別や年齢、曜日、クラスレベルなど―で分解し分析することで、課題の本質を見出す大切さを学びました。アンケート結果と生徒のコメントから、具体的な不満点が明らかになり、問題解決の手がかりをつかむことができました。 なぜを追求する? また、複数の仮説を立て「なぜ?」を繰り返し問うことで、定量データと現場感覚を両立させたアプローチの重要性を実感しました。目的を明確にし、何を改善するのかを起点に指標や手法を選ぶ姿勢は、実際の改善策を実行する上での大きな指針となりました。 具体策は何? 特に、社員の離職率改善を例に、採用からオンボーディング、定着施策までの各段階における仮説立案と検証の流れを学ぶことで、短期・中期・長期のステップで具体的なアクションプランを策定する手法が実践的であると感じました。

クリティカルシンキング入門

読んで実感!受講生の本音学び

データ選びはどうする? 表やグラフを作成・視覚化する際、まず「どのデータを扱い、何を表現するか」が重要であると学びました。具体的には、時系列データの場合は棒グラフを用い、経緯や変化を表現したい場合は折れ線グラフ、さらに要素ごとの比較には棒グラフが適していると理解しました。 視覚表現を工夫する? また、表やグラフの見せ方にも工夫が必要だと感じました。資料作成にあたっては、ただ漫然と作るのではなく、内容に応じてフォントや文字色を変更するなど、視覚的なメリハリを意識することが大切です。さらに、相手に情報を探させず、流れに沿って順序立てることで、意図がより分かりやすくなるという点も強調されていました。メッセージに一言添える配慮や、グラフの視認性向上についても検討するよう学びました。 文章の魅力は何? ライティングに関しては、読者にしっかりと伝わる文章を作るために、アイキャッチとなる工夫が有効であると理解しました。具体的な例を挙げることで、イメージが膨らみ、意外性や興味を引くことができるという点が参考になりました。 資料文書の目的は? さらに、社内向けの資料作成やお客様への提案資料作成においても、「目的意識」を持って仕上げることが大切だと実感しました。相手が情報を探す手間を省けるよう、視認性の高い、分かりやすい資料・文章作成に努める姿勢を、今後も意識していきたいと思います。

アカウンティング入門

売上原価に潜む成長の秘密

売上原価の違いは何でしょうか? 企業分析を行う際、販管費と比べて業界やビジネスモデルによって売上原価の構成が大きく異なる点に着目することが非常に大切です。売上原価は売上獲得に直接関係するコストであり、各企業が採用する価値創造プロセスの違いによって、その内容が大きく変わってきます。学習中には、とある大手企業の事例からこの点の重要性を改めて実感しました。 事業分析の視点はどこでしょうか? まず、自社事業別のPLやBSの分析と、各競合企業の分析が必要であると感じました。当社はビジネスモデルの異なる複数事業の複合体であるため、各事業の価値創造プロセスの違いを意識した分析が求められます。この考え方で競合企業を調査していくことにも意義を見出しています。 利益上昇の理由は何でしょうか? また、売上総利益が前年比で大幅に上昇しているため、その要因を特定する必要があります。ここで注目すべきは売上原価です。原価は売上に直結する支出であるため、まずは売上構成の詳細やその推移を把握し、その上で原価の中身を詳しく調査することが基本になると考えています。 情報整理はどう進めるのでしょう? さらに、必要な社内データが複数のシステムで管理されている現状では、情報の整理が不可欠です。すぐに必要な情報にアクセスできるシステム環境が整えば、より迅速かつ正確な分析が可能となり、大いに業務改善につながると期待しています。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

データ・アナリティクス入門

売上2割減に挑む!論理的思考で解決へ

ライブ授業から得た教訓は? ライブ授業で取り上げられた「売上昨対2割減」に向き合う例題についての感想です。このようなオーソドックスな例題に対して、何を知りたいか、どのように仮説を立てるかを考える際、必要な情報を十分に洗い出すことができませんでした。また、適切なグラフを思い浮かべることもできず、ビジュアル化に苦慮しました。しかし、「やみくもに分析しない」「ストーリーを大事にする」という前提は常に意識しています。こうした困難に直面しないよう、フレームワークや論理的思考、分析のための関連情報について日々インプットを続け、実践に活かせるようにしておかなければなりません。 赤字解消に向けた第一歩は? 現在、自部門が赤字という現実に直面しています。まずは実績を集計し、現場のメンバーにもヒアリングしながら情報を集め、自分なりの仮説を明確化することから始めます。そして、4つのステップで分析し、解決に向けて取り組んでいきます。フレームワークを活用し、経験や勘に頼らない形で、フラットに考えながら取り組むつもりです。 チームの協力で問題を解決? 早急に解決が求められる問題のため、迅速に対策を講じます。データ集計の際は、自身の目で確認するだけでなく、メンバーの協力を得ながら多角的にデータを収集します。講座で学んだ内容をチーム内で共有し、部門の問題について関係者とともに仮説を立て、解決策を見つける努力を続けます。

クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

クリティカルシンキング入門

問いから始まる新たな発見への旅

問いの必要性は? 問いを立てることの重要性を再認識しました。私の仕事を振り返ると、言語化して問いを立てることが不足していることに気付きました。問いの立て方によって考える方向性が大きく変わるのです。具体的に何が問題で解決すべきなのかを短期的な視点で捉えることが、効果的な問いやイシューにつながると感じました。ただし、長期的な視点での問いも重要ではありますが、それが本質論になると、足元の問題やミッションとずれてしまうこともあると実感しています。 報告方法はどう工夫する? 顧客に調査結果を報告する際、単なるデータの羅列では不十分であることを学びました。事実だけ述べると、自分が何を伝えたいのかが曖昧になり、お客様にとっても「だから何なのか」という疑問を生んでしまう可能性があります。お客様の業績や現状を考慮に入れて、調査結果から得られる価値ある情報を明確にし、具体的な問いを立てて伝える必要があります。 企業報告のポイントは? 企業ごとの報告内容を作成する際は、前回調査からの変化や企業の関心の高い論点を中心に状況をまとめます。これらの背景要因を分析し、状況を正確に把握した上で、具体的な問いを立てることが重要です。問いに対する回答を作成するためには、必要なデータベースを参照することも大切です。最終的には、プレゼンテーションに向けてストーリーを展開し、効果的に伝わるように文章を工夫しています。

クリティカルシンキング入門

未来を創るオンライン学習体験

自分の考えに疑問は? 情報を慎重に読み取り、形式や流れにとらわれることなく、最初に出した自分の回答に疑いをかけることが重要です。特に、どこに重点を置くべきかによってアプローチ方法が異なることがあります。一つの点にだけ集中してしまうと見落としが発生するため、広い視野を持ち、多様な視点からゼロベースで考えることが求められます。 どこを改善すべき? 新しいコンテンツの開発や新オペレーションの考案に際して、前回のコンテンツ実施時のアンケートを分析し、次回への改善点を見つけます。この際、見えたものをそのまま受け取るのではなく、多様な視点から分析を行い、売上を伸ばすためにどこに注目すべきかを考えます。お客様の声や運営スタイル、人件費など、幅広い視点からの観察と熟考がアプローチ方法に影響を及ぼします。 どんなデータに注目? これまで、グラフ上で下回っている部分に注目して改善を試みてきましたが、さらなる成長の可能性にも目を向けていきたいと考えています。異なる特性を持つデータを比較することで、新たな発見が生まれる可能性があるため、目の前のデータだけでなく、それに関連するデータにも焦点を当て、イシューを特定することが求められます。また、様々な視点からの意見が新たな気づきをもたらすため、自分一人で考えるのではなく、ミーティングやデイリーの引継ぎ時間を活用して意見を共有し合うようにしたいです。

クリティカルシンキング入門

イシューで磨く本質の力

イシューの本質は? 「イシューとは何か、そしてイシューを設定して考えるとはどういうことか」を学びました。例えば、ファストフードチェーンの事例では、売上増という大きな目標に向かって進む前に、まず情報を細かく分解し、本当に解決すべき問い(イシュー)は何かを探るプロセスが大切だと説明されていました。売上増そのものがイシューではなく、目標達成の障壁となる要因や課題を見極めることが、本質であると理解しました。これにより、これまで「売上に対して何をやるべきか」という問いを立てていた自分の方法にブレがあったことに気付き、今後は目標への障壁となる具体的な課題に着目して情報を整理しようと考えています。 イベント数字は何示す? また、コラボイベントの売上やSNS運用のデータ集計から、次の施策へ向けた具体的なアクションを導き出す際にも、この視点が役立つと感じています。たとえば、3か月間実施したイベントの数字の推移を加工・整理し、目標売上に対して実績がどの程度であったか、また達成のためにはどのような条件が必要かを検討することで、課題(イシュー)を明確にする予定です。 イシューの適否は? さらに、目標と解決すべきイシューが混同しやすいため、ピラミッドストラクチャーを活用して「そのイシューは本当に適切か」を客観的に確認し、より的確な仮説にたどり着けるよう進めていきます。

クリティカルシンキング入門

データ分析で見つけた新たな視点と発見

データ加工の真実は? データの加工によって、見えてくる事実や印象は大きく変わるものです。「数字は嘘をつかないが、詐欺師は数字を使う」との言葉がありますが、まさにその意味を実感しました。情報は、どのように分解するかによって、判明する内容に差が出ます。ただし、最初から適切な区分けを定義することは難しく、仮説に基づいた検討になりがちです。そのため、区分けをできるだけ小さな単位で行い、グラフ化や計算によって傾向を見出すという方法が現実的です。 異軸の関係は? 一つの軸で明らかになった事実を他の軸と結びつける際には、それらの軸がどのような関係にあるのかを考慮する必要があります。全く異なる軸同士の場合、それらを組み合わせて四象限にするなどの工夫が求められます。 ログ分析で何が? 私は現在、自社サービスの顧客の利用状況をログで分析し、利用状況に問題がないか確認する工程に取り組んでいます。その結果に基づき、さらにARPU向上を提案しています。このデータ分析には、今回学んだ分解する観点を活用したいと考えています。 新データの可能性は? 先週、新しい利用状況データを取得できたため、来週にその分析を実施する予定です。この新しいデータは、これまでのものよりも詳細で、分析する軸が多岐にわたります。今回学んだ、複数の軸の関連性を考慮した事実抽出の手法が、大いに参考になりそうです。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

クリティカルシンキング入門

伝わる資料は細部に宿る想い

グラフの意味は何? グラフが持つ一般的な意味について再認識する機会となりました。例えば、縦棒グラフは要素間の比較に、折れ線グラフは変化や経緯を表現する際に効果的です。資料作成においては、グラフの種類だけでなく、配色、配置、フォントなど細部にも意図を込めることができると実感しました。こうした「隅々まで趣向を凝らす」姿勢を持つことで、手間をかける理由―伝えたいという強い思い―が資料に温かみを与え、結果として細かな注意点も自然とクリアできると考えています。 人事資料は分かりやすい? 人事部では、全社向けに発信される資料が多数あるため、誰が読んでも理解しやすく、視覚的に読み込みやすい資料作成の重要性を感じています。特に、人事考課や昇格試験の案内では、体裁の整え方に重きを置き、ナンバリングなどを活用してより簡潔に情報を伝えられるよう工夫していきたいと思います。また、人事から発信する読み物においては、アイキャッチの工夫により従業員のメリットや関心に沿ったデザインを心掛け、興味を引く資料作成を目指します。 数値資料で納得? データを用いた資料作成においては、相手に情報の探索をさせないため、定量的なグラフを活用し、配色やフォントにも意図をもって整えることが重要です。さらに、メッセージとデータの整合性を常に意識しながら、分かりやすく簡潔な資料作りを進めていきます。
AIコーチング導線バナー

「情報 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right