戦略思考入門

データで描く経営の未来

感情論よりデータは? 今週の学習を通じて、課題解決において感情論ではなく、客観的なデータに基づいた多角的な分析と、論理的に伝える力が不可欠であるという点を強く実感しました。タクシー業界の市場縮小、運転手不足、燃料費の変動リスクなど、一見ネガティブな情報も、なぜ自社にとって問題なのか、またその解決策がどのように経営に貢献するのかを具体的に示すことが重要だと感じました。例えば、配車アプリ導入の際には「便利だから」という感情論ではなく、実働1日1車あたりの運送収入の向上や燃料費削減といった定量的なメリットを提示し、説得力を高める必要があります。同様に、提携相手との関係では、懸念に対して新たな顧客ネットワークへのアクセスやノウハウ共有といった共存共栄のメリットを論理的に伝えることが重要でした。 実務でどう活きる? また、この学びは私の実務にも大いに役立つものです。これまで漠然と抱えていた課題も、現状を数値で把握し、その原因を深掘りすることで具体的な解決策へと繋げることができると考えます。特に、外食業態の現場では新メニュー開発や既存メニューの見直しにデータ分析の手法を応用することで、「現状維持は衰退」という視点から戦略的にアプローチできると感じました。顧客データを詳細に分析し、どのメニューが十分に売れていないか、また潜在的なニーズがあるかを客観的に把握することにより、食材原価の変動リスクを踏まえた仕入れルートの見直しや、ロス削減を図るメニュー設計など、収益性向上につなげることができます. 店舗戦略は何が鍵? さらに、店舗の集客戦略やマーケティング活動においても、周辺の人口構成や競合店の情報を詳細に分析し、ターゲット顧客を明確化することで、適切なプロモーション戦略を展開することが可能です。例えば、若年層が多いエリアではSNSを活用したプロモーション、高齢者が多い地域ではテイクアウトやデリバリーサービスの導入など、具体的な戦略を立案していきます。また、店舗の強みや独自性を明示し、効果的に伝えることで、顧客へのアピール力を高める狙いがあります. 人材育成方法は? さらに、従業員の育成やシフト管理の効率化にも今回の学びは役立ちます。従業員のスキルや得意分野をデータとして可視化することで、適切な人員配置を行い、少ない人数でも店舗運営の質を維持する工夫が求められます。従業員教育においては、単にマニュアルを渡すのではなく、売上データや顧客からのフィードバックを共有し、なぜそのメニューが支持されているのか、背景を理解してもらうことで、サービスの質を向上させる取り組みが重要だと感じました. 売上分析のポイントは? まずは、POSシステムの売上データを活用し、日次・月次売上だけでなく、メニューごとの販売数、時間帯別の客数、客単価、曜日別の変動などの詳細な数値を抽出し、現状分析を強化します。特定メニューの売上低迷が続く場合は、その原因が季節性、価格設定、競合店の影響のいずれかを深掘りするために、顧客アンケートや口コミ分析も併せて実施します. 会議運営をどう改善? 次に、分析結果を基に新メニュー開発会議の進め方を見直し、シェフのアイデアに頼るだけでなく、データに基づいた「売上改善」や「顧客ニーズへの対応」を目的とした会議運営を行います。具体例として、売上が低迷するランチメニューを刷新して客単価の向上を目指すといった目標設定を行い、食材選定、原価計算、試作の各段階でデータを活用しながら評価します。会議では、単なる味の評価だけでなく、競合との比較やターゲット層への訴求力など多角的な視点から議論を進めます. 情報共有はなぜ重要? 最後に、従業員間での情報共有と教育を強化することで、データと論理に基づいた経営判断ができるよう努めます。抽出した売上データや顧客フィードバックを定期的に共有し、各自が「なぜこのメニューが売れているのか」を理解する機会を設けることで、課題意識を高め、店舗全体の生産性と顧客満足度の向上につなげていきます.

クリティカルシンキング入門

実案で磨く、問いと提案の極意

マック事例の魅力は? マックの経営改善の事例では、飲食店が顧客にどのような仕掛けを施しているのか、そのプロセスを学べたことが大きな収穫でした。本質的な課題に迫る問いや考え方を理解するため、一連の流れを整理し、復習することが理解度をさらに高めるのに役立ちました。 顧客事例の意味は? 自身の業務では、直接売上や顧客へのアプローチ、営業活動に関わっていないため、講義での現実の顧客事例の理解は非常に貴重でした。もしも最前線で営業を担当しているなら、提供する製品を具現化するイメージを持ち、ペルソナ設定やデジタルマーケティングの手法を活用しながら、プレゼンテーションやセールストーク、販売手法、アフターサービスを体系的にまとめ、各顧客に合わせた販売戦略を確立することになるでしょう。 自業応用のヒントは? また、飲食店経営の事例からは、自分の業務にどのように応用できるかをイメージすることが大切だと感じました。課題の記載にはピラミッドストラクチャーやMECEの考え方を用い、時間軸、優先度、業務効率を考慮することで、組織内の意思決定に役立てる意識を持つようにしています。 本質課題の意義は? 「本質的な課題」とは、形式的な課題ではなく、物事の核となる部分を捉え、整理・分解することから解決策を導くアプローチです。課題を提示する際、核心を押さえた内容であっても、相手によっては関心が薄いことがあるため、視点を変える工夫が求められます。これまで、理解が得られなかった場合は無理に誘導せずに終わらせていた点を反省し、今後は相手の視点に立って一工夫を加えるよう努めます。 データ運用の疑問は? また、業務においては大量のデータを扱う中で、定型的なグラフを使った比較がルーティン化してしまっています。例えば、一部の部門ではBIツールとしてタブローが利用されていますが、他部門では別のサーバーのデータが正確とされ、導入に慎重な面もあります。今後は、現状の前提を見直し、利用可能な範囲を点検していく必要を感じています。 問い設定はどう? さらに、AI時代においては「問いの設定力」が極めて重要なスキルとなります。期待する答えを引き出すための問いを、行動経済学や心理学を加味しながら設定するには、実践と訓練が欠かせません。自らの得意分野とは異なる領域に挑むことで、問いの立て方の精度を高め、スキル向上を目指しています。 提案準備の工夫は? 業務企画の現場では、学んだ内容をプレゼンテーションに活かし、説得力のある提案を行えるよう努めています。同時に、データ利活用における課題についても、データ量の大きさやシステム構築の面から自らの知識を深め、SQLのトレーニングを通じて効率的なデータ処理を実現するための準備を進めています。 思考整理のポイント? クリティカルシンキングに関しては、Week1で学んだ基礎を基に、自分の考えやアイデアを整理して伝える力の強化を目指しています。マインドマップやピラミッドストラクチャー、MECEの手法を活用し、視点を変えて相手にわかりやすい説明を心がけ、試行錯誤を重ねながら整理力を向上させています。 言語化の成果は? また、日々のトレーニングとして、1週間で400文字程度の言語化を行っています。日経のアプリを活用し、1日2回、300文字程度で議題に関して知識の範囲内で整理し素早く書く練習を継続しています。これにより、書いた内容の振り返りと分析から課題を抽出し、より簡潔に伝える力の向上を目指しています。

クリティカルシンキング入門

クリティカル思考で挑む6週間

どの過程を振り返る? 今週の学習では、6週間を振り返りながら、提案に至るまでの思考プロセスを整理することに取り組みました。具体的には、以下の5つのステップで学習を進めました。 イシューは何かな? まず第一に、「イシューを特定する」ことが求められました。どの取り組みが課題解決に最も効果的なのかという問いを明確にし、内部・外部環境やデータを検証することで、本質的な論点を捉えることが目的です。このプロセスでは、イシューを共有し、次々と立てることが重要とされました。 どうやって主張する? 次に、イシューに対する主張と根拠を組み立てる際、「問い続ける姿勢」を重視しました。誰に、どの立場で、どのシーンでという視点を踏まえながら、抽象と具体の両面や対となる概念を行き来し、案や視点の幅を広げることが大切でした。 どのデータを検証? 三つ目のステップでは、目的に沿ったデータの分解、加工、グループ化、並び替え、計算要素の追加、さらにはグラフ化を通じて仮説検証を進めました。5W1Hの観点からデータを細分化し、一つの傾向に留まることなく、複数の要素を使ってクリティカルに検証する方法が求められました。 どの伝え方が有効? 四つ目の段階では、整理した示唆を相手に効果的に伝えるため、「相手のニーズから理由づけを組み立てる」という手順が採用されました。相手が何に関心を持っているかを起点に論点を絞り、具体的な事実や数字を加えることで、説得力のある文章へと落とし込みました。 どう資料を魅せる? 最後に、資料の「見せ方」に留意し、メッセージと整合したグラフやスライドの構成にまとめました。時系列に縦棒、比較に横棒を用いるなど、上から下・左から右への自然な視線の流れを意識して情報を配置することで、提案内容が相手に理解されやすくなると感じました。この一連のプロセスが、クリティカル・シンキングを実務に活かした提案へとつながると理解しました。 自社戦略はどう決める? また、自社業務と顧客先業務の双方で課題解決に焦点を当て、本講座で学んだ内容を実践していきたいと考えています。自社業務では、IT戦略の検討において、どの領域に投資するかという提案を行うため、ビジネスインパクトが大きな領域を見極めることが重要です。自社の売上データを細分化し、内部・外部環境を分析することで、どの領域に大きな影響があるかを把握します。そして、従来のIT導入促進を目的とする戦略ではなく、顧客企業の利益拡大を狙った戦略を問いとして立てたいと考えています。 効率化の提案は? 一方、顧客先業務では、業務効率化の提案を目指します。システム検証業務において最も時間を要している工程を見直し、どのタスクが削減可能かという問いを立てることで、効率向上につなげたいという意図です。 どう改革につなぐ? このように、クリティカル・シンキングを実践することで、自社・顧客双方において課題解決への新たなアプローチを追求し、最終的には企業や社会を改革できる人材を目指していきたいと考えています。

戦略思考入門

本質を捉える学びの軌跡

分析フレームって何? 戦略立案のためのフレームワークとして、3C分析、SWOT分析、クロスSWOT分析、そしてバリューチェーン分析を学びました。これらは、単に使うだけでなく、「本質を見抜く思考力」を養うための手段であると痛感しました。3C分析では、顧客、競合、自社という視点から現状を多面的に捉える大切さを学び、特に顧客分析では市場全体(市場マクロ)と個々の顧客(顧客ミクロ)の両面からニーズを探ることで、購買決定要因を明確にする意義を実感しました。 競合分析の見方は? また、競合分析においては、ライバル企業だけでなく、そのビジネスモデルや強み・弱み、そして自社との違いを把握することが戦略策定の出発点になると理解しました。自社分析にも、データや現場の声などの定量・定性の両面から冷静に状況を見直し、「今の強み」に過信せず常に再評価する姿勢が求められると感じました。SWOT分析やクロスSWOT分析では、内部要因と外部要因を掛け合わせ、「だからどうするか?」という具体的戦略の策定が重要である点も印象的でした。さらに、バリューチェーン分析では、企業活動全体を俯瞰し、どの工程で付加価値が生まれているのか、また改善の余地があるのかを見極める視点が有用だと学びました。 IT現場で活かせる? この学びは、IT業務の現場でも大いに活用できると考えています。たとえば、要件定義の段階では3C分析を用い、顧客企業の業界動向や利用者の業務課題を深く理解することで、単にシステムを作るのではなく、顧客の本質的なニーズや業務上の重要成功要因を捉えることができます。さらに、競合分析の視点を取り入れることで、他社との差別化や自社の強みを明確にし、説得力ある提案が可能になると思います。 開発の質はどう? システム開発の段階では、バリューチェーン分析が有効です。開発プロセス全体を「付加価値を生む流れ」として把握し、各工程ごとに品質や効率の差がどこで生じているのかを明確にすることが、プロジェクト全体の生産性向上や品質改善につながるでしょう。試験工程においては、SWOT分析やクロスSWOT分析を応用し、試験体制や品質管理の強み・弱み、さらに外部の要求や技術の変化を加味した上で、具体的な改善策を導き出すことが重要です。 委託先との連携は? 最後に、バリューチェーン分析についての疑問もありました。動画学習では、商品企画から物流、販売、アフターサービスまでを分けて自社の優位性を探る方法が紹介されましたが、必ずしも全ての企業がこの一連の流れを持つわけではありません。その場合でも、分析は有効です。たとえば、自社が一部の工程を外部に委託している場合には、内製部分や連携先との協力体制、または各工程間の価値の受け渡しに着目することで、どの部分で差別化が図れるかを考察できます。こうした視点を取り入れることで、企業活動全体の流れを俯瞰し、自社の優位性や改善点をより明確にできるのではないかと思います。

アカウンティング入門

会計が導く成長戦略の秘訣

資金調達の意義は? Week 1では、企業が事業活動を通じて価値を提供し、その対価として収益を得る仕組みについて学びました。設備投資、人件費、材料費、光熱費、広告宣伝費、物流費、法務関連費用など、多岐にわたるコストが発生する中で、これらの費用を賄うための銀行借入や投資家からの出資といった資金調達の重要性を再確認しました。また、一連の経済活動を数値化・記録・整理・報告するアカウンティングの仕組みや、法的ルールに基づいた財務三表の作成と公開により、透明性と信頼性が維持されている点にも注目しました。 事業展開の要素は? つまり、企業が新たな事業展開や製品ローンチを進める際には、市場把握、競合分析、法的要件の遵守、人的・物的資源の確保、さらにはサプライチェーンの構築など、さまざまな要素が不可欠です。そのすべての判断とプロセスを支えるのがアカウンティングであり、意思決定の「共通言語」として将来の戦略立案の基盤であると再認識しました。 仲間との意見交換は? グループディスカッションでは、さまざまな業界や地域から受講されている仲間と意見を交わせることができ、今後のグループワークがとても楽しみです。 会計知識の現場活用は? 今回の学びを通じ、アカウンティングの基礎知識が日々の意思決定に直結する重要なスキルであると感じました。自身の業務に照らし合わせると、デジタル施策やプラットフォーム運用におけるコスト構造の理解、固定費と変動費の区分、原価配分の考え方などが、限られた予算の中で成果を最大化するために欠かせないと実感しています。財務三表を読み解く力を高めることで、事業の収益構造をより定量的に把握し、投資判断や交渉時に説得力のある根拠を示すことができるのではないかと考えています。今後は、会計的思考を活かして、短期的な成果だけでなく、中長期的な価値創出につながる戦略の立案・実行へと発展させていきたいと考えています。 事業部データの解析は? また、グローバル企業では連結決算を中心に報告が行われるため、国別や事業部別の詳細な財務諸表が外部に開示されるケースが少ないと感じています。皆さんの企業では、事業部単位の財務データをどのように入手・分析されているのでしょうか。また、システム改修などの投資判断において、単に時間短縮や販路拡大、営業効率などの効果を数値化するだけでなく、財務諸表を通じて事業全体の財務状況を踏まえた意思決定を行うことが重要であると感じました。このテーマは、アカウンティングの延長線上にありながら、ファイナンス領域の財務分析に近い視点をも含んでいると思います。今後、会計的知識を基盤に、投資判断や事業評価にどのように結びつけていくかについて、皆さまと共に学びを深めていければと考えています。

データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

データ・アナリティクス入門

数字だけじゃ見えない分解の力

なぜ全体では見えない? 今週のケーススタディでは、データ分析における分解とプロセスのステップ化の重要性を学びました。最初は全体の満足度を確認したときは横ばいで問題がないように見えたものの、クラス別に分解すると上級クラスでのみ満足度の低下が見受けられ、全体の数字だけでは特定の条件下で発生する問題を見逃す危険性があると実感しました。 コメントと数字の関係は? また、定量データと定性データの組み合わせによって数字の背景にある理由が明らかになる手法も印象的でした。充足率や苦情件数といった数字と生徒のコメントを照らし合わせることで、数字が示す事実に対するより深い理解が得られると感じました。 業務改善の分解法は? さらに、採用プロセスをステップごとに分解してボトルネックを把握する手法は、自分の業務に応用可能であると感じました。業務フローの各ステップの所要時間を可視化することで、改善が必要なポイントを明確にできると考えています。 仮説検証の効果は? 最後に、複数の仮説を立ててからデータで検証するアプローチが、問題解決の際に重要であると再認識しました。原因を一つに決めつけず、多角的に検討する姿勢は日々の業務においても活かしていきたいと思います。 エンジニア視点で何を学ぶ? 私はWebサービスの安定運用を担当するエンジニアとして働いています。今回学んだことは、システム障害の原因分析と業務プロセス改善の二つの場面で活用できると考えています。 障害原因はどこにある? まず、システム障害が発生した際には、全体のエラー率だけを確認するのではなく、機能別、時間帯別、利用者別など、複数の切り口でデータを分解して問題の発生箇所を特定することが重要です。また、利用者からの問い合わせ内容と数字を組み合わせることで、障害の背景にある理由を明確にすることができると実感しました。具体的には、障害時のチェックリストに分解の切り口を追加し、チーム全体で共有することで対応の質を向上させたいと考えています。 対応時間短縮は可能? 次に、障害対応にかかる時間短縮という課題に対しては、原因検知から初動対応、原因特定、復旧作業、再発防止策の検討といったステップに分解し、各プロセスの所要時間を記録してボトルネックを特定する手法が有効だと感じました。例えば、原因特定に時間がかかる場合は、調査情報の整理や手順書の見直しが必要であると考え、障害対応の記録フォーマットに各ステップの所要時間を記入する欄を追加し、データを蓄積して分析することで改善に役立てたいと思います。

クリティカルシンキング入門

問いが導く成長の旅

「問い」から始まる重要性は? 特に下記の3点が学びとなりました。 まず、「問いから始めること」の重要性です。人間は「なんとなく」から始めがちなので、「問い」は何かを意識することがスタート地点となります。 問いの共有がもたらす効果は? 次に、「問いを残すこと」の大切さを学びました。問いを意識しても忘れてしまったり、その内容を忘れてしまうことがあります。したがって、問いを常に意識し続けることが重要です。 さらに、「問いを共有すること」も理解しました。仲間内で問いを共有することで、自分一人ではなく、組織全体の力で解決に導くことができるというところが大切です。 データ視覚化の新たな気付き ★課題についての学び まず、データの分解と視覚化の重要性です。データを単に表示するだけでなく、課題の本質を明確にするためには、データの適切な分解と視覚化が不可欠であることが分かりました。特に、データを複数の視点から分析することで、隠れた問題を浮き彫りにすることができます。 明確な課題設定の重要性を再認識 次に、課題設定の明確化の必要性を学びました。課題を適切に設定し、具体的に表現することで、問題解決に向けた取り組みがより効果的になることを認識しました。曖昧な問題設定ではなく、具体的な課題を明示することが解決策の提案や実行を促進します。 ターゲットに応じた戦略はどう構築する? さらに、ターゲットに応じた戦略の必要性についても理解しました。特定のターゲット層に焦点を当てた戦略が有効であり、ターゲットを絞り、そのニーズに合った商品やサービスを提供することが課題解決につながるという学びです。 柔軟なマーケティング戦略の意義とは? マーケティング戦略の柔軟性も重要だと学びました。市場の変化に対応し、季節ごとに異なるニーズに応じた柔軟な戦略を展開することで、持続的な成長が可能になるという洞察を得ました。 システム導入で重要なサポートとは? システム導入のサポートに関しては、タスクを細分化しそれぞれに役割を持たせ、最終的にゴールに導く予定です。以下の2点を重視します。 1. チームで動くとき、ミーティング時などには常に最初にイシューを明確にして目線を整えること。人は意識しても忘れてしまうものだからです。 2. 議論の方向性がズレそうなとき、イシューは何かを考えて素早く軌道修正できる思考を持ち続けること。悪意がなくともズレてしまうことが多いためです。今後は問いを続け、本質や核心に迫る議論ができるよう行動していきます。

データ・アナリティクス入門

仮説×4Pで迫るデータの真実

問題はどこにある? まず、データ分析の出発点として、どこに問題があるのかを明確に特定し、その問題に対して仮説を立ててからデータを集める流れの重要性を実感しました。過去のデータは失敗の原因を探るために、未来のデータは仮説の検証に活用するという視点が新鮮で、漠然とデータを眺めるのではなく、明確な仮説を持って取り組むことで分析の質が大きく向上することが分かりました。 複数仮説は難しい? また、複数の仮説を一から立てるのが難しいため、ビジネスフレームワークの活用が有効であると学びました。たとえば、4Pの視点から事例を考えることで、各観点から仮説を立て抜け漏れなく問題を多角的に捉えられる効果を実感しました。 複数仮説で見抜く? さらに、一つの仮説に固執せず、複数の仮説を立てて決め打ちしないという原則が印象的でした。一つの仮説に偏ると、それを裏付けるデータばかりに目が行きがちですが、複数の視点を組み合わせることで、より客観的な分析が可能になると理解しました。 検証方法は正しい? 仮説を検証する際には、自分が見たい情報だけでなく、反証となるデータも集めることが重要です。比較対象となる情報を確実に収集することで、確証バイアスを避け、より信頼性のある判断が下せると感じました。 費用対効果はどう? また、問題解決の際には、費用対効果を基準に施策を評価する方法も学びました。複数の施策候補がある中で、この指標を活用することで、効率的に優先順位を決め、実行可能な解決策を選択できることを実感しています。 なぜ仮説を並べる? 現場でのインシデント対応についても、調査開始前に必ず複数の仮説を書き出すことが改善につながると感じました。たとえアプリケーションの問題と疑っても、インフラやデータ層の可能性も考慮し、各仮説に対してどの指標やログを確認すれば検証できるか明確にすることで、偏らない客観的な分析が実現されます。 監視の落とし穴は? さらに、システム監視の見直しでは、インフラ層、アプリケーション層、データ層、外部依存という4つの視点に分類し、それぞれで見逃されがちな指標やアラート設定の不足がないかを洗い出す作業を行っています。特に、複数の層にまたがる問題に対しては、層間の関係も意識することで、予兆を捉え、問題が深刻化する前に対策できる体制の構築に寄与していると感じています。

クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

クリティカルシンキング入門

データ解析で見える新たな地平線

解像度の高い情報化方法は? 単なる数値データを解像度高く意味のある情報にするための方法について考えました。まず、データの加工では、比率を見たり加算したりとひと手間加えることで、情報を活用できる状態にします。また、グラフ化することで、数字では見えづらかった傾向を視覚化し、理解を深めることができます。 データ分解のポイントは? データの分け方については、グラフ化した後にどの粒度で分けるかが重要です。機械的に分けるのではなく、仮説を持って複数のパターンを試行錯誤することで、有意義なデータを導き出すことができると考えています。分解のポイントとしては、事柄を「いつ、誰が、どのように」といった複数の視点から見ることが重要です。分解した結果、傾向が見えない場合でも、その視点では傾向が見られないという意義のある結果になります。さまざまな切り口で分解し、一度立ち止まって本当に正しいのかを考えることも大切です。 MECEに基づく問題解決とは? 問題解決のステップを踏む上では、MECE(モレなく、ダブりなく)を意識します。MECEの切り口には、全体を定義して部分に分ける層別分解、事象を変数で分ける変数分解、ある事象に至るプロセスで分けるプロセス分解などがあります。これにより、モレなく網羅的な分析が可能になります。 フィードバックの重要性 最後に、物事をMECEを軸に分解して考える際、考え方の偏りによってモレなくという部分が満たせなくなることがあるため、自身の考えの癖を常に意識し、他者からのフィードバックを受けて手法の精度を高める必要があります。また、分析結果が仮定と近い場合でも、すぐに結論付けず、一歩踏み止まって再考する習慣を大切にしたいと考えます。 システム運用の問題予防はどうする? システム運用における問題予防の観点では、膨大な数値データの中から意味を見つけ出し、データを扱う方法を変えていくことが重要です。H/W、M/W、NWの性能レポートや監視ツールのデータから、予防保守という視点で今後起こり得る問題の傾向を掴むようにデータを活用していきたいと思います。
AIコーチング導線バナー

「データ × システム」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right