戦略思考入門

差別化戦略で広がる可能性

差別化の出発点は何? 差別化を図る際は、まず「競合他社の幅広さ」や「ターゲットとなる顧客」といった前提条件を明確にすることの重要性を再認識しました。大きな差別化戦略であるコストリーダーシップを必ずしも実践する必要はないかもしれませんが、差別化や集中戦略は自社の戦略に十分応用できると感じています。 業界戦略はどう考える? 自身の業界に当てはめると、3つの戦略やVRIO分析といった枠組みは、現在の自分の立場よりも会社全体の戦略部や経営層に近い組織で判断されている印象です。単に方向性を示されるだけでなく、その判断に至る分析結果が説明されることで、より納得しやすくなります。なお、組織単位でVRIO分析を行った場合、その組織の強みは見えても、会社全体の最適な解決策とはならない点には注意が必要です。 どのような工夫がある? また、差別化を考える際に、先に答えを思い浮かべ、その答えを補強するために優位な競合や顧客情報を並べる傾向があります。経験則から出る直感自体は否定しませんが、視野が狭くならないよう、どのように工夫しているのかを考える必要を感じました。

データ・アナリティクス入門

小さな比較が大きな決断へ

分析の目的は何? 分析は、対象の比較を通して最終的な意思決定に役立てるためのプロセスです。まず、分析の目的をはっきりと定めることが大切です。その際、必要な要素の整理を行い、どのような切り口で分析を進めるかを考えます。 比較とグラフはどう? 具体的には、各要素を同じ尺度で比較できるよう配慮しながら、縦棒グラフや横棒グラフの使い分けに注意を払い、差異を視覚的に把握しやすい構成を目指します。数値データだけでなく、感覚的なスコアも、別の切り口を用いることで定量的に表現できる点が重要です。 柔軟な検討は必要? また、データ分析の依頼を受けた際は、まず目的に関する詳細なヒアリングを行い、分析に必要な各要素の分解や整理を丁寧に実施します。目の前のデータに固執することなく、柔軟な視点から検討することが求められます。 結果のまとめは? 最終的な分析結果のまとめにおいては、伝えたいメッセージに最も適したグラフやダッシュボードを選択することが鍵となります。こうした取り組みが、分析時に生じる躓きや失敗を解決するためのディスカッションに繋がっていくでしょう。

データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

戦略思考入門

コモディティ化を超える戦略発見旅

フレームワークの役割は? 自社のサービスや商品の特性を明確にし、理解を促進するためのフレームワークを学ぶことができました。特に、習熟効果があるポイントを超えると、競争相手とのコスト差がなくなり、差別化が難しくなって事業が行き詰まるという点については、自社の事業にもいずれ該当するリスクがあると感じています。 競争優位性をどう維持する? 製品がコモディティ化してしまうと、技術の優位性やコスト削減の努力が事業の成長につながらなくなることを実感しました。そのため、さらなる競争優位性を持つためのポイントを見つけるか、新たな事業を立ち上げる必要があると考えられます。こうした重要な局面で、この講座で学んだフレームワークが役立つと感じました。 中期経営計画に向けての準備 今後の中期経営計画の策定においては、自分がその責任者になったつもりで、プロダクトの将来を予測し、開発計画を立てることを想定しています。この講座で学んだフレームワークを駆使して、自社のビジョンに基づいた5年後、10年後の理想的な姿を提示できるように、年度内にアウトプットを作成する予定です。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

データ・アナリティクス入門

変化を捉え、採用戦略の新しい視点を獲得

「分析は比較なり」とは? 「分析は比較なり」という言葉が強く印象に残りました。これまで、分析を行う際にはひとつの情報やデータから何かを導き出そうとすることに注力しがちでした。しかし、適切な対象と比較を行うことが重要であることに改めて気づかされました。データ加工が目的化し、肝心な分析がおろそかにならないよう、「何のための分析なのか」を明確にすることが大切だと学びました。 採用戦略にデータ分析をどう活かす? また、この知見は顧客企業の採用戦略を考える際にも活用できると感じました。顧客が抱える採用課題を解決するためには、現状データ(求職者の動向や志向性など)をもとにボトルネックを分析する必要があります。目標と現状の差を正確に把握するために、今回の学びを活かしてデータ分析を行いたいです。 自分なりの仮説が鍵? さらに、顧客の課題に対して自分なりの仮説を立てること、分析の目的を明確にすることを意識していきたいです。採用市場は日々変化していますが、その変化を「仕方がないこと」と捉えるのではなく、変化の原因や市場の動きを常に考えていくことが重要です。

戦略思考入門

古きを温め新しきを拓く挑戦

伝統と変革ってどう? 捨てる勇気という観点では、日本人は抽象論だけで考え、取引先の顔を重視する傾向にあると感じます。昭和の高度経済成長期の成功体験が、企業や家庭の古い価値観、さらには伝統的な家督制度とともに今も残っているため、その全否定は容易ではありません。しかし、時代の変化を受け入れ、アップデートと意識改革を行うことは国力維持にも欠かせないと考えています。個人差はあるものの、今後は定量的な指標が必要になるでしょう。 DX推進の方向性は? また、過去のビジネスモデルからの脱却が叫ばれる中で、現代が向かう方向性を見据え、周囲のメンバーを巻き込みながら省力化と省人化を目指すDX推進は、自身のミッションだと感じています。 温故知新って何を意味? 「捨てる」という言葉は、ALL or Nothingの印象を与えがちですが、日本人が得意とする阿吽の呼吸や蓄積されたノウハウ、そして文化の重要な部分は保持する方法があればと願っています。できれば、捨てる前に視野を広げ、改善の余地を模索する「温故知新」の視点を持った判断をしていきたいと思います。

データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

戦略思考入門

フレームワーク超克で見えた自社の魅力

フレームワークの苦手感は? フレームワークに対しては苦手意識がありましたが、目の前の課題を解決するためには、自分一人で思いつくアイディアや情報には限界があると痛感しました。そこで、フレームワークを使いこなし、自社、競合、市場の現状を正確に把握することで、自社のどの部分に付加価値があり、また他社と比べてどの点で優れているのかという視点から解決策を導き出したいと考えるようになりました。 連携不足はどう解決? 利用希望者は増えている一方で、事業所も次々と増加しており、競争が激化していく中で、自社内に多数の専門職が在籍している点は大きな強みです。しかし、事業所間の連携に課題が残っているため、この部分の改善が進めばさらなる強みにつながると期待しています。また、専門的な知識が十分でない事業所も多く存在するため、今後は知識量の向上に努め、差別化を図っていく必要があると感じました。 情報整理は何が肝心? いざ分析に取り組む際には、市場や競合の状況を事前に把握しておくことが不可欠です。皆さんは、どのように事前情報を整理しているのでしょうか?

データ・アナリティクス入門

データ分析で差をつける!実務のヒント

どうして比較が鍵? 分析は比較です。判断基準には、Aがある場合と無い場合を比較することが重要です。適切な比較対象を選ぶことが鍵であり、特に分析する要素以外の条件を揃えること(Apple to Apple)が必要です。分析の目的に応じて比較対象を選定します。 実務でどう活かす? 実務では、委託業者の選定などにおいて、この知識が非常に役立つことがわかりました。データ分析は比較が基本ですので、何のためにどのようなデータが必要なのかを明確にし、仮説を立てることが重要です。これにより、データ分析の目的をはっきりさせ、早速実践に移したいと思います。 コンテンツをどう提案? ラーニングイベントのサーベイ結果をもとに、今後提供可能なコンテンツをいくつか提案する予定です。実践プロセスとして、まずはデータ分析の目的を仮説に基づいて明確化し、次に判断基準を具体化します。具体化のステップとしては、Aがある場合と無い場合を比較し、適切な比較対象を選ぶこと、また分析したい要素以外の条件を揃えて(Apple to Apple)、目的に沿った比較を行います。

データ・アナリティクス入門

平均値の裏に隠れた真実

計算方法で何が変わる? 動画を通じて、平均値と言っても採用する計算方法によって分析結果が大きく異なることを実感しました。これまで数値のばらつきや外れ値についてあまり意識していなかった自分にとって、正確な分析を行うためにはこれらの点をしっかり捉える必要があると感じました。平均、加重平均、中央値の使い分けについては理解していたものの、幾何平均や標準偏差という手法は新たな気づきとなりました。 例外ケースはどう捉える? また、契約顧客に関して解約率やアップセル率を分析する際、まれに契約金額が大きく、どうしようもない理由で解約となる場合や、一時的にアップセルが成立する場合があります。そのような際には、これらのケースを外れ値(ばらつき)として扱うことにより、より現実に即した数値で分析できると感じました。 手法の選び方はどう? 今後、定量的なデータ分析を行う際には今回の学びを活かし、初めは単純平均や加重平均など、さまざまな手法で計算結果を出してみることで、それぞれの数値の違いを実感しながら、より精度の高い分析を心がけていきたいと思います。

マーケティング入門

体験が紡ぐ新たな学び

どんな価値を提供? 価値とは、単に商品を提供するのではなく、関連した体験を一緒に売り出すことにより生み出されるものです。こうしたアプローチは他社との差別化につながり、似通った商品が溢れる現代において競争力を高める大きな要因となります。 記憶に残る体験は? 1990年代に用いられたある自動車のキャッチコピー「モノより、思い出。」を思い返すと、物そのものの魅力よりも、消費者の記憶に残る体験を重視する姿勢がうかがえます。しかし、消費者自身が気づきにくい体験を提案するのは難しいため、十分なリサーチが不可欠だと感じます。 自社の体験の可能性は? 自身の業務はバックオフィスと言われる部門に属しているため、直接「体験」を売るのは一見難しいように思えます。しかし、業界や自社の特性を踏まえると、十分に「体験」を提供できる可能性があると考えます。まず、自社の強みとなるポイントを見出し、その魅力に付加価値としての体験を組み合わせたアピールが必要です。そして、誰に対してどのような体験を提供するのかを明確にし、効果的に展開していくことが求められます。

「差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right