データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

リーダーシップ・キャリアビジョン入門

気づきと挑戦のリーダー日記

リーダーシップの変化は? リーダーシップのスタイルは、かつては命令者がすべてを管理する方式が主流でした。しかし、今日の変化の激しい環境においては、すべてを一人で管理することは難しく、現場に一部の権限を委譲するエンパワメントが求められるようになりました。権限を委譲する側は、育成の観点を忘れず、目標の明示と必要な支援を行うことが大切です。一方で、高度な政治力が必要な業務や不確実性が高く、失敗が許されない仕事には、この手法は適さない場合もあると感じます。 目標設定の疑問は? リーダーシップにおいては、「わかる」と「できる」が異なることを認識しなければなりません。目標を設定する際、成功の基準が定まっていなかったり、その意義に納得できていなかったりすると、適切な成果を上げることが難しくなります。業務を委譲する際は、自身に余裕があることと、相手の能力や状況を十分に理解していることが前提です。さらに、目標設定の際は、意識、具体性、定量性、挑戦の観点から整理し、6W1Hを踏まえた細部まで明確な依頼をすることが必要です。本人が目標設定に参加することで、モチベーションも高めることができるでしょう。 伝わる声かけは? また、依頼する際には相手が本当に取り組みたいと思えるような声掛けが求められます。相手ができないのか、わからないのか、またはやりたくないのかを見極め、適切なサポートや対話を通じて、認識のずれをなくす努力が重要です。業務の説明だけでなく、相手が内容を正しく理解しているか確認するプロセスを設けることで、自主性を尊重しつつ、進捗状況を把握できる体制を作ることが期待されます。 委譲の落とし穴は? 社内ではエンパワメントによる目標設定が義務化されているものの、業務全般に無理に権限を委譲しようとするケースも見受けられます。現場に任せる範囲と、重要な決定については上長が連絡・相談するという報告ラインを整備する必要があります。日々の業務判断において、現場リーダーに委譲することで一部問題が発生した事例もあり、全体の管理が過度になるとマイクロマネジメントにつながる危険性があると感じています。管理職は、日常の後処理に膨大な時間を費やすのではなく、先導すべき課題に注力できる仕組みづくりが求められています。 連携の壁は何? さらに、社内横断プロジェクトや複数の関係者が集まる組織では、明確なゴール設定や教育的なサポートが難しくなるため、業務の割り振りが一層複雑になります。これまで、多くの場合、一人の幹事に大きな負担がかかってしまうか、または分担しても後に大幅な修正が入るという状況がありました。限られた時間と労力の中で、各々の経験や知見を活かし、より完成度の高い業務を実現するためには、どのような働きかけが適切か、さまざまな意見を交換していく必要があると考えています。

データ・アナリティクス入門

仮説で切り拓く思考と成長の道

仮説はどう捉える? 仮説は論点に対する仮の答えであり、そこから検証や分析を進める出発点といえます。仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、前者は最終的な結論の方向性を先に立て、そこから逆算して必要な情報を集めて検証を進めるものです。一方、後者は起きている問題に対して「なぜそうなっているのか」「どうすれば改善できるか」を探るプロセスであり、What、Where、Why、Howといった問題解決の手法を意識して仮説を立てます。 仮説はどう整理? これまでは仮説を一括りで捉えていましたが、今後はどちらのタイプの仮説に取り組んでいるのかを明確に意識して使い分けたいと感じています。また、複数の仮説を立てることで決め打ちを避け、柔軟な視点を保つことができます。加えて、仮説同士の網羅性を意識し、カテゴリやプロセスといった異なる切り口からの検討は、より構造的なアプローチにつながります。こうした取り組みが、課題設定力の向上にも寄与すると考えています。 どんな経験が役立つ? これまでの業務経験では、「結論の仮説」と「問題解決の仮説」の両方に取り組む機会がありました。特に施策の立案など、結論を先に想定する場面ではフレームや構造を活用し、全体像を俯瞰したうえで結論から逆算して仮説を立てることが効果的だと感じています。一方、日々の業務でデータを確認し、問題を発見・提示する機会が増える中、What/Where/Why/Howのプロセスを意識した仮説立案が、原因特定から改善策の検討までの一連の流れを円滑に進める助けとなっています。 仮説の質はどう上がる? また、仮説の質を高めるためには、網羅性を意識しながらさまざまな切り口で検討する姿勢が重要です。この取り組みを通じて、本質的な課題設定ができ、より実効性のある打ち手へとつなげることができると実感しています。 学習の効果は何? 今回の学習を通して、「結論の仮説」と「問題解決の仮説」という2種類の仮説が存在することを再認識しました。振り返ると、私は「こうすればうまくいく」という結論の仮説に対してやや苦手意識を持っていたと気づきました。 今後の改善はどう? そこで今後は、まずフレームワークを活用して構造的に考えることに努めます。要素分解を通じて仮説を立てやすくし、思考に型を取り入れることで苦手な結論型の仮説も導き出しやすくする狙いです。また、間違ってもよいという前提で自分なりの仮説を積極的に立てることで、完璧を求めず「とりあえずの仮置き」を実践し、言い切る練習を重ねつつ検証を前提とした思考に慣れていきます。さらに、学んだ知識をそのまま受け入れるのではなく、自身の業務や経験に照らして問い直し、アウトプットや振り返りを通じて知識を深め、実際に使える形に育てる努力を続ける所存です。

戦略思考入門

業務改善への学びを深める新たな視点

複雑性の原因は? 現在、私の所属する会社では、複数の事業が並立し、複雑化しています。この状況を「範囲の不経済」として再認識する機会となりました。新規事業を立ち上げるにあたって、社内資源を最大限に活用しようと心掛けていましたが、それがかえって事業の複雑性を増す原因になっていたように感じます。今後は、「既存ビジネスとの資源の共通部分が本当に強みを生むのか」を再度考える必要があると感じています。 業務思考の向上は? 総合演習を通じて、普段の業務に当てはめて考えることのできる観点を学びましたが、実際には業務中に立ち止まって考える余裕が足りませんでした。今後は、自分自身で立ち止まり、思考を深めるべきポイントを明確にすることから始めたいと思います。また、演習時に思い付きで意見を列挙した場合と、フレームワークを活用して検討した場合とでは、回答の整理や網羅性に大きな違いがありました。この違いは業務にも大きく影響するため、情報の整理や思考を深めることを習慣化したいと考えています。 部門調整はどう? また、現在は事業が多様化しており、範囲の不経済が生じている状況です。業務においては、本部間の調整や組織の運営に対処する必要があります。これに対し、まずは個々の本部の意向を一旦脇に置き、会社全体のあるべき姿を客観的に見据えて、他部門との対話や調整を進めていきたいと思います。 ターゲット明確化は? 演習を通じて、ターゲットの明確化が不可欠であることを改めて認識しました。現在、事業全体で共通のターゲット像が描けていないことが課題です。これまでこの問題に対して提言できずにいましたが、学習によって外部環境や内部環境の整理が不足していたことが原因であると理解しました。今後は、行動計画に従って具体的な対策を講じたいと思います。 資源活用を見直す? まず、自部門に限らず他部門も含めたバリューチェーン分析やVRIO分析を行い、会社全体の構造と資源を再評価したいと考えています。これまでの「自社資源を何が何でも活用する」という考えを見直し、共通の資源が本当に強みとなるかを検討することで、真にシナジーが期待できる部分のみを利用するようにして、経済的な効果を生み出す状態を目指します. 議論で成長できる? 加えて、3C分析やSWOT分析を用いて一切の漏れがないよう情報を整理し、ターゲットをどこに設定すべきか、自分の言葉で繰り返し言語化していきます。この学び全体を通じて、言語化の重要性とそれに伴う能力の鍛錬が必要であることに気づきました。したがって、今後のアウトプットについては、必ず上司や同僚と議論し、終わりではなく改善を繰り返す姿勢で取り組んでいきたいと思っています。

データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

デザイン思考入門

自分も受講したい!共感ステップの実践

なぜ共感が大切? 「共感ステップ」では、単なる情報収集にとどまらず、ユーザーの課題や背景を深く理解し、求める解決策を的確に見極めることが重要であると学びました。現在取り組んでいるワークショップ形式の研修デザインにおいても、受講者の視点に立ち、彼らが何を感じ、何を求めているのかを探るプロセスに重点を置く必要があると考えます。例えば、研修設計の段階で自ら受講者となって演習を体験し、ショートケースの妥当性や適切な所要時間を確認すること、また事前アンケートにより受講の狙いや期待を把握することで、表面的なニーズだけでなく本質的な課題も見極めることができると実感しました。 どう適用する? 共感ステップについて、具体的な研修デザインへの適用方法をよく考えられている点は非常に印象的です。より多くの受講者の視点やニーズを探るアプローチを試みることで、さらに多面的な理解が得られると感じます。 どの調査が有効? また、受講者の背景や課題を深く理解するために、どのような追加の調査手法が有効か、そしてワークショップデザインで共感をさらに深めるためにどのような方法を試すべきかを考えることも有意義だと思います。 どう設計すべき? 事前アンケートの実施や自身での演習を通じて、以下の点が重要であると改めて認識しました。まず、受講者のペルソナに応じた研修の難易度設定とシナリオ作成です。受講者の職種、経験年数、課題意識を踏まえ、適切なレベル感で研修を設計し、理解しやすいストーリー展開を意識することが求められます。次に、説明資料の粒度と所要時間のバランス調整が重要です。受講者の集中力や理解度を考慮し、必要な情報を適切なボリュームで提供するとともに、講義とワークの時間配分を最適化する工夫が必要です。さらに、ワークの難易度設定と題材設計については、受講者が主体的に考え、実践的なスキルを習得できるよう、初心者でも取り組みやすく、発展的な応用が可能な内容を用意することが大切です。 どう改善する? 今後も、受講者の視点に立ち、実際の学びにつながる研修デザインを追求していきたいと考えています。今週は、共感ステップの実践を通じて、ユーザー理解の深め方について学びました。現場に足を運び、ユーザーの行動や発言を客観的に捉える「現場観察」と、自らが取り組む中で感じる感情や視点を体験する「参与観察」との違いが印象に残り、これらの手法を組み合わせることで、ユーザーの潜在的なニーズや課題の本質を見極めるための深い分析が可能になると感じました。今後は、実践の場を通じて共感ステップをより意識的に活用し、受講者視点の学びを深めながら、研修デザインやサービスの改善につなげていきたいと思います。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

リーダーシップ・キャリアビジョン入門

実体験で磨くリーダーの未来

学びはどう深める? ライブ授業やロールプレイでは、「自分に引き寄せられる」ことが学びを深める上で欠かせない要素だと実感しました。リーダーシップは日々のあたり前の積み重ねであり、実際の経験が洞察と理論を融合させることで、その効果がさらに高まると感じました。6週間で学んだ内容を実践するための心構えが最後のライブ授業に凝縮され、一度にすべてを実践するのは難しいため、理解した内容を行動に移し、振り返りながら次のステップに進む重要性を改めて認識しました。また、ロールプレイでは仲間同士で本音で意見を交わせた一方、実践の場では自分の考えを伝えるだけでなく、相手の意見を深く理解する必要があると感じ、日頃のコミュニケーションの積み重ねの大切さを実感しました。 理想のリーダーは? WEEK1で記した理想のリーダー像は依然として変わらず、なぜそのように考えたのか、また理想に近づくためにどのような行動をすべきかを理解する上で、本講座の内容は非常に有益でした。当初掲げた、チーム全体が前向きな姿勢で取り組むことで個々の成長が互いに刺激となり、結果として相乗効果を生み出すという目標を実現するため、今後も学びと実践を重ねていきたいと考えています。 相互信頼はどう育む? 目標設定、計画立案、そして振り返りとフィードバックを通じて、業務成果と部下の成長を両立させるためには、相互信頼が基盤となります。そのため、言葉の選び方やタイミングに細心の注意を払い、自分の伝えたいことが部下にしっかり届くよう努めるとともに、部下が気軽に意見を発言できる環境づくりを日常的に意識したいと思います。無意識に行っていた人間関係の構築を体系的に見直し、相手に合わせたコミュニケーションや表現方法を学び続けることが必要です。 関係性はどう変わる? また、関係性の構築においては、同僚や仲間としての立ち位置から、リーダーとして業績や成果を考慮した関係性へと徐々にシフトしていく必要があると感じています。一歩先を見据えて課題を設定し、プロジェクトの行く末を自分なりに推測した上でフィードバックに活かすなど、より戦略的な関係性の構築を目指していきたいと考えています。 低評価はどう響く? 最後に、ロールプレイなど実際の経験を通じて、相互の意識や関係性がどのように変化したのか、また評価面で低い結果が出た場合の被評価者の心情について、具体的なエピソードや対処方法があれば伺いたいです。評価側が誠意を尽くしたとしても、低評価という現実がどのように影響するのか、またそれを乗り越えるためにどのような方法を採ったのか、ぜひお話を聞かせていただければと思います。

戦略思考入門

実践で磨く戦略思考のヒント

基本フレームワークは何? 今週の動画学習では、戦略を考える上で有用な基本的フレームワークについて学びました。まず、3C分析では、市場・顧客、競合、自社という3つの視点から現状を把握し、戦略を立案する枠組みを学びました。また、PEST分析により、政治、経済、社会、技術の各観点から自社を取り巻く外部環境を整理する方法を理解しました。さらに、SWOT分析で自社の強み、弱み、機会、脅威を洗い出し、それらを掛け合わせるクロスSWOT分析によって、現状や将来の方向性をより具体的に検討するプロセスを体験しました。バリューチェーン分析においては、製品やサービスが顧客に届くまでのさまざまな工程を整理し、そこに競争優位の源泉を見出す考え方を学びました。 分析で今何を感じる? 現段階では、これらのフレームワークを完全に使いこなせているとは言えませんが、実際に自社の状況や経営環境に照らし合わせて分析することで、現状の把握や今後の戦略の方向性を具体的に考える良い手がかりになりました。実践演習では、「自分ならどう考えるか」、「チームとしてどう合意形成を図るか」という視点を重視し、多様な意見を引き出す姿勢の重要性や高い視座から課題全体を俯瞰する必要性を実感しました。 業界戦略はどう考える? 私は医療関連業界で自社戦略の立案を担う部門に所属しており、今回学んだ各種フレームワークは業務に直結する重要な知識です。3C分析による現状把握、PEST分析による外部環境の理解、そしてSWOT分析およびクロスSWOT分析で整理した自社の強みや課題をもとに、今後どのように戦略を展開していくかを具体的に検討していきたいと考えています。 学んだ知識をどう使う? この学びを実践に活かすため、今週末までに学んだ全てのフレームワークを自社の状況に合わせて分析することを目標に設定しました。動画学習だけでは補いきれない部分については、関連書籍を活用して復習し、戦略的思考をより深めていく所存です。過去にフレームワークを学んだ経験はありましたが、当時は実務へ反映させる意識が薄かったため、今回の学びは業務に直結する形で活かすべきだと強く感じています。 難題にどう向き合う? 一方で、グループワークの課題となっているバリューチェーン分析を、調剤薬局業界に当てはめる点については難しさを感じています。製造から販売までを一貫して実施する企業であれば学んだ内容がそのまま当てはまるのですが、保険制度で決められた報酬体系の中で経営を進める業界特有の側面をどのように取り入れるかについて、具体的なアドバイスやヒントをいただけるとありがたいと思います。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

データ・アナリティクス入門

逆算で探る課題解決のヒント

結果から問題設定は? 問題や課題を解決するには、ただ漠然と分析するのではなく、まず結果から逆算して問題を設定し、その根本原因を把握することが重要だと学びました。表で示されたデータを図に起こすことで、全体像を俯瞰しやすくなり、どこに課題が潜んでいるかを明確にできると感じました。 数字の裏側は? また、計画値と実績値のギャップが全体にどの程度影響しているかをパーセンテージで示すことは、単なる数字の大小だけでなく、その背後にある要因を突き止め、分析の精度を高める上で有効です。単に数字が大きいという事実に注目するだけでなく、継続して損失が出ている状況など、現場での定性的な情報も加味し、何を最優先で分析すべきかを決めることが大切であると感じました。 分析の切り口は? さらに、すべてのデータが整っているわけではないため、まずはどの切り口でデータ分析を行うか、仮説を立てた上で手元のデータを整理、収集する姿勢が求められます。データに向かう前に、視野を広げ多角的に問題を捉える体制を整えることが鍵となります。 現状と理想は? また、現状(as is)と理想(to be)のギャップを明確にすることが重要です。何を理想とするのか、どこにギャップがあるのかという点を関係者全員で合意することが、問題解決のスタート地点になると理解しました。 解決策の整理は? 問題解決には、改善を目的とするアプローチと、さらなる向上を目指すアプローチの2つがあり、ロジックツリーのような思考整理のツールは、全体を複数の要素に分けて検証する際に非常に役立つと感じました。具体的には、層別分析や変数分析などを駆使して、細部にわたる解決策を検討することが効果的です。 その他の注意点は? 加えて、全体の中で『その他』に分類される割合が大きくなる場合は、データの切り分け方が適切かどうかの見直しも必要です。数値上は少数であっても、影響力が大きい要素には十分な注意を払うことが重要だと思いました。 戦略分析はどう? 広報戦略や施策の検討においても、ロジックツリーなどを活用し、どの視点からデータを分析すべきかを考えることが有効だと感じています。また、ウェブから得たデータを単に眺めるのではなく、具体的な問題や課題を設定し、何を知りたいのかを明確にすることで、分析の精度を大いに高めることができると思いました。 定性情報は何? こうした定量的な分析に加え、定性的な情報も取り入れる事例を学ぶことで、納得感を持ちながら現場の試行錯誤をより深く理解できるようになったと実感しました。

クリティカルシンキング入門

問いが導く成長の旅

「問い」から始まる重要性は? 特に下記の3点が学びとなりました。 まず、「問いから始めること」の重要性です。人間は「なんとなく」から始めがちなので、「問い」は何かを意識することがスタート地点となります。 問いの共有がもたらす効果は? 次に、「問いを残すこと」の大切さを学びました。問いを意識しても忘れてしまったり、その内容を忘れてしまうことがあります。したがって、問いを常に意識し続けることが重要です。 さらに、「問いを共有すること」も理解しました。仲間内で問いを共有することで、自分一人ではなく、組織全体の力で解決に導くことができるというところが大切です。 データ視覚化の新たな気付き ★課題についての学び まず、データの分解と視覚化の重要性です。データを単に表示するだけでなく、課題の本質を明確にするためには、データの適切な分解と視覚化が不可欠であることが分かりました。特に、データを複数の視点から分析することで、隠れた問題を浮き彫りにすることができます。 明確な課題設定の重要性を再認識 次に、課題設定の明確化の必要性を学びました。課題を適切に設定し、具体的に表現することで、問題解決に向けた取り組みがより効果的になることを認識しました。曖昧な問題設定ではなく、具体的な課題を明示することが解決策の提案や実行を促進します。 ターゲットに応じた戦略はどう構築する? さらに、ターゲットに応じた戦略の必要性についても理解しました。特定のターゲット層に焦点を当てた戦略が有効であり、ターゲットを絞り、そのニーズに合った商品やサービスを提供することが課題解決につながるという学びです。 柔軟なマーケティング戦略の意義とは? マーケティング戦略の柔軟性も重要だと学びました。市場の変化に対応し、季節ごとに異なるニーズに応じた柔軟な戦略を展開することで、持続的な成長が可能になるという洞察を得ました。 システム導入で重要なサポートとは? システム導入のサポートに関しては、タスクを細分化しそれぞれに役割を持たせ、最終的にゴールに導く予定です。以下の2点を重視します。 1. チームで動くとき、ミーティング時などには常に最初にイシューを明確にして目線を整えること。人は意識しても忘れてしまうものだからです。 2. 議論の方向性がズレそうなとき、イシューは何かを考えて素早く軌道修正できる思考を持ち続けること。悪意がなくともズレてしまうことが多いためです。今後は問いを続け、本質や核心に迫る議論ができるよう行動していきます。

「課題 × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right