データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

デザイン思考入門

顧客の声で変わる営業の未来

新たな支援策とは? 営業力を支援するため、従来の販売視点ではなく、顧客のインサイトや潜在的な課題発掘に焦点をあてた営業活動のプロセスについて考察しました。まず、顧客が知りたいと思う情報提供として、営業が把握している各顧客の業務や作業の顕在課題に対し、公開情報ではたどり着かない新たな解決策を提案します。たとえば、ある企業が進めるデジタル化では、従来の方式に潜む無駄を見出すといった視点です。 解決方法に疑問は? 次に、顧客が固執している解決方法に疑問を投げかけ、従来とは別のアプローチを示すことで共感を得る試みがあります。実際の現場では、必ずしも全面的なシステム導入に固執せず、コミュニケーションの改善による生産性向上といった選択肢も提示されています。 効果はどう現れる? また、共感が得られた段階では、提案した解決策のROIなど具体的な実施効果を明確にし、実際にその方法がもたらす成果を数字や事例で示すことが求められます。その上で、解決策を自社の状況に置き換えてイメージできるよう、具体的なストーリーテリングを用い、顧客自身の課題として捉えてもらう工夫がなされています。 合意形成はどう? そして、最終的には提示した解決方法について、顧客と合意形成を図ることが重要です。この時点では自社の製品やサービス導入は必ずしも前提とせず、まずは解決策そのものへの合意が得られることが目的となります。 顧客関係の維持は? また、実践には至っていないものの、販売商品の訴求以前に、顧客との関係性を維持し、課題に寄り添う姿勢が重要であると考えます。こうした取り組みにより、営業は顧客に新たな気づきを提供できると同時に、営業自身の心理的安全性も担保されると感じます。実際、営業職はプレッシャーに強いという固定観念がある一方で、日々の業務の中で自省や試行錯誤を行っているのが現実です。 検証プロセスは? さらに、プロトタイプ作成の際には、ユーザーの本質的な課題を解決することが最も重要です。対象者が共感を失わない課題設定に基づき、実際のユーザーの声を取り入れて改善を繰り返すことで、限られたスケジュール内においても効率的な検証プロセスが実現できると感じました。

デザイン思考入門

問いかけが育む共感の力

顧客の悩みは何? 業務でサービス開発に取り組む中、ターゲットとなる顧客にインタビューを実施し、悩みや課題を洗い出しながら、そこから得られるインサイトや示唆を導き出しています。これまでは感覚的に共通項や心理を見出していたものの、以下の問いを設定して進めることで、思考が一層明確になると感じました。 ・顧客が感じている悩みは何か? ・その背景にある思考や本能は何か? ・この思考に至る組織的な制約条件(評価や文化など)は何か? ・最終的に、根本課題や真因は何か? AIはどう評価? AIコーチングからは、顧客インタビューを通じて課題やインサイトを探るアプローチに対して高い評価が寄せられています。明確な問いかけを用いることで思考が深まった点は大いに評価できる一方、さらに具体的な顧客事例や背景を考察することで、理解がより深まる可能性が示されています。 解決策は何? また、以下のような問いも提示されました。 ・インタビューで見つけた顧客の悩みの根本原因に対して、どのような解決策が考えられるか? ・提示された「課題定義」の5つのポイントはどのように活用されているか? このような追加の問いかけを通して、顧客理解をさらに深めるために、さまざまな視点でのアプローチを試みることが大切であると感じます. 今回、提示された4つの問いで思考を巡らせた結果、提供価値に直結する良い結論(真因)を導き出すことができました。ただし、試行は一度に留まっているため、今後はさらなる改善を図っていきたいと考えています。背景にある思考や本能、さらには組織的な制約条件を探ることが「共感」に繋がるのではないかと感じています。 分析方法は? また、定量分析と定性分析についても再認識する機会となりました。課題定義フェーズでは定性分析を重視し、定量は仮説の立証に活用するという考え方です。「根本課題・真因」を考える際には、背景にある思考や本能、そしてそれに影響を与えた組織的な制約条件(評価や文化など)を深く掘り下げることが、インサイトの導出に繋がると感じます。言うは易く行うは難しいですが、意識的に構造化して思考を働かせ、今後も実践していきたいと考えています。

リーダーシップ・キャリアビジョン入門

社用車管理のエンパワメント成功術

エンパワメントとは何か? エンパワメントとは、メンバーが自律的に業務を遂行できるように促すリーダーシップの一つです。目標を設定して、その達成方法をメンバーの自主性に任せつつ、効果的な支援を行います。ただし、ミスが許されない仕事や納期が極端に短い仕事には向かない手法です。リーダーがメンバーをよく理解し、モチベーションやスキル、喜びを感じる要因を見極めることも重要です。人材育成という側面も忘れずに考慮する必要があります。 目標設定はなぜ重要? リーダーシップの実践における第2ステップは目標設定です。目標設定では、メンバーをそのプロセスに参加させることが重要で、問いかけを通じてメンバーの問題意識や関心を引き出し、発言を促すことでコミットメントを得ます。また、目標は具体的で定量的であるべきです。メンバーが優先順位をつけて行動しやすいような、測定可能な目標が望ましいです。その際、目標に意義を持たせることで、メンバーの使命感を引き出し、挑戦感を与えることも大切です。これはメンバーに少し高めの目標を与えることで実現します。 成果が出ない時の対処法は? しかし、目標設定をしてもメンバーがやる気を出さない場合は、それが理解不足なのか、実行不能なのか、意欲の欠如なのかを見極めて、適切な支援を行う必要があります。 総務業務に目標設定をどう活用する? 私の業務に関して言えば、総務業務における目標設定を活用できると感じています。今回は、社用車管理業務に注目します。総務の業務は組織方針において抽象的になることが多く、(例:従業員が働きやすい職場環境の改善)そのため、メンバーが業務を日常の一環と捉えてしまい、課題の改善に取り組む意欲を持ちにくいと感じています。 具体的に、25年度の社用車管理業務の目標設定を実施しようと考えています。関係するメンバーを集め、問題意識や関心点をブレインストーミングで出し合い、それを整理します。小さな問題やすぐ解決できる事案は日常業務として処理し、大きな解決策が必要なものや即座に解決策が出ないものを課題として取り上げ、目標設定を行います。目的の意義、定量的かつ具体的な内容、そして挑戦の要素を各メンバーに伝え、エンパワメントを活用します。

マーケティング入門

学びがひらく未来への扉

セグメントは何がポイント? まず、セグメンテーションの切り口として、人口動態変数、地理的変数、心理的変数、行動変数の4つがあることを学びました。購買行動に差が出る切り口を意識することが重要であり、当社の観光コンテンツ配信事業では、アニメファンという趣味嗜好や行動特性を重視すべきだと考えています。 火付け役の意義は? 次に、1stユーザー(火付け役)の選定と普及要因の重要性について学びました。サービス設計においては、比較優位、適合性、わかりやすさ、試用可能性、可視性の5つの普及要因を押さえる必要があります。特に、AIDMAの各段階に合わせ、まずは注意を引くための可視性、次に分かりやすさで興味を喚起し、比較優位で魅力を訴求、適合性により導入意欲を高め、試用可能性を低いハードルで実現することを意識した設計に取り組みたいと考えています。 評価基準はどう違う? さらに、ターゲティングの評価基準として、Realistic Scale(市場規模)、Rate of Growth(市場成長率)、Rival(競合優位性)、Rank(優先順位)、Reach(到達可能性)、Response(顧客反応)の6Rについて学びました。各セグメントについて、代表ペルソナの課題に基づく市場規模や成長率、自社アセットとの親和性、チャネルを活用した到達可能性、そして顧客反応を具体的に評価することが必要です。 事業企画の狙いは? 今回の事業企画は、既存のコミックプラットフォームを活用した観光コンテンツ配信として、アニメファンに推し旅や推し消費の提案を行うものです。現時点で顧客課題の把握、ペルソナの定義、解決方向性の設定、課題の確からしさに関するインタビューが済んでおり、今後は以下のスケジュールで具体的な検証を進めます。 検証スケジュールは? 2月下旬の週には、セグメントごとの市場規模とコストの調査を行い、3月上旬にはその結果をもとに市場規模の判定とコスト試算を実施します。続く週には、優先すべき事業アイデア3つについて、解決策の適合性をインタビューを通じて確認し、3月中旬にこれらの成果をまとめ、未達事項を整理します。そして、3月末の審査会に向けた最終調整を進める予定です。

データ・アナリティクス入門

問題解決を加速するストーリー設計

問題解決の本質は? ストーリー設計は、問題解決に向けた重要な要素です。分析に取り組む前に、解決したい問題を明確にし、結論のイメージを持つことが必要です。これにより、分析のプロセスが円滑に進められます。 仮説思考で何を見る? 分析のプロセスには、仮説思考のステップがあります。まず目的を設定し、仮説を立て(多少外れても問題ありません)、データを収集して検証します。また、5つの視点を持つことが重要です。インパクト(どれだけ影響を与えるか)、ギャップ(違いを見つける)、トレンド(時間の中での変化)、ばらつき(分布を見極める)、パターン(法則性の有無)を確認します。アプローチは、グラフや数値、数式を活用して進めます。 学びの次の一歩は? 今後の学習においては、考えを言葉にする「言語化」や本質を見抜く力、自分ごと化が重要です。また、「ありたい姿」に向けてのチェックポイントとして、具体性や意義、挑戦性、現実性を考慮し、モチベーションを維持する仕組みを構築する必要があります。 役割と判断の秘訣は? 私に求められている役割は、販売全体の動向を注視し、適切な配分調整で営業利益を達成することです。さらに、働きやすい環境作りや各自が能力を向上できる環境整備を推進します。そして、上司や部下、社外の方々と積極的にコミュニケーションを取り、一方的に考えを固執せず、全体最適な観点で判断を行います。大局的な会社の方針や戦略、動向を踏まえた部門運営を明確に提示し、決断します。 現状改善の策は? 会社のDX推進プログラムにエントリーし、具体的な課題解決に取り組んでいます。例えば、Web関連の各種KPIを全社の目標と関連づけ、可視化することが求められています。これは、WebのKPIが達成されても営業利益が未達成となる現状を改善するための施策です。また、プロモーションを投資対効果で判断する仕組みが必要とされています。さらに、データを活用できる人材の育成も重要課題です。専門的な分析を行う人材と、日々の判断を容易にするためにデータを活用する人材を育成する方針です。 今後の学びはどう? 以上の取り組みを通じて、今後も必要なスキルの向上や新しい学びを続けていきます。

データ・アナリティクス入門

Whereが導く新たな学び

解決のステップは? 問題解決の4つのステップを意識することで、課題解決に向けた取り組みがより効率的になると感じました。今後は、最も重要なポイントである「Where」を意識して分析に着手していきたいと思います。業務においては、あるべき姿と現状とのギャップを、定量的な指標で示すことが大変有効だと印象に残りました。 総評はどう考える? 総評として、問題解決のステップを意識し、効率的なアプローチを追求する姿勢は素晴らしいと感じます。また、定量的な分析の重要性を理解している点も非常に大切だと思います。今後は、具体例を交えた検証により、さらに深い理解が得られるでしょう。 手法とデータは? さらに思考を深めるための問いとして、以下の点を考えてみてください。 ・問題の「Where」を意識する際、具体的にはどのような手法を用いる予定ですか? ・業務での定量的分析を強化するために、どのようなデータが必要だと考えますか? 今回学んだポイントを、実務に具体的にどのように応用するかもじっくり考えてみてほしいと思います。頑張ってください。 理想と現実は? また、「あるべき姿」と「現状」のギャップについては、①正しい状態に戻すための問題解決と、②ありたい姿に到達するための問題解決があると認識しました。たとえば、以下のようなケースが想定されます. ・売上販売目標の場合  → 100%達成に届かない状況と、120%達成を目指す状況がある ・製品シェアの内訳の場合  → シェア80%を目指す場合と、シェア100%を目指す場合がある ・KPI Activityの場合  → 会社の指標を順守する場合と、それを大きく上回る目標を設定する場合がある 比較で見極める? さらに、分析にあたっては「分析とは比較なり」という考え方も大切です。具体的には、社内の数字の良い組織や競合他社と比較することで、現状とあるべき姿を明確にすることが重要です. また、あるべき姿と現状は、定性的な情報だけでなく、定量的な情報としても示すことが重要です。定性情報を定量化するために、数値によるスコア化(たとえば0、1、3など)を統一した条件で設定する手法も有効だと感じました。

リーダーシップ・キャリアビジョン入門

振り返りから生まれる成長の秘訣

欲求の階層って何? 人間の欲求は、生理的欲求や安全・安定性欲求、そして社会的欲求など基本的なものから、承認欲求や自己実現欲求といった高次の要素まで階層的に構成されています。特にモチベーションを維持するためには、これらの高次の欲求が満たされることが重要であると実感しました。 共に目標を立てる? モチベーション向上の基本は、相手を尊重しながら共に目標を設定することにあります。その上で、振り返りとフィードバックを通して、成功体験や課題を自分の言葉で整理するプロセスが効果的です。この過程では、相手の意見に真摯に耳を傾け、支援者としての姿勢を示すことが大切です。また、自分自身の教訓や気づきを見出し、今後に生かす具体策を考える機会とすることが、モチベーションの向上につながると感じました。 職場環境を整える? さらに、職場環境においては、衛生要因と動機付け要因の両面に配慮する必要があります。単なる報酬制度ではなく、人間の欲求構造に沿ったインセンティブ制度の構築が求められます。個々のメンバーの価値観を理解し、内発的動機を引き出すアプローチを実践することで、チーム全体の生産性の向上と個人の成長が促進されます。 信頼関係の築き方は? 具体的なプロセスとしては、まず第1段階である価値観の理解と信頼関係の構築が重要です。定期的な1on1ミーティングを通じて、各メンバーが大切にしている価値観やキャリア志向、成長したい分野について対話を重ね、安心して本音を話せる環境を作ります。 適材適所の工夫は? 次に、第2段階では、把握した価値観に基づいて個々の動機付け要因(やりがい、成長、承認など)に合った役割や業務を設計します。挑戦的なタスクに適切なサポートを加えつつ、自律性も尊重し、成功体験の積み重ねを促す取り組みがポイントです。 成長への権限移譲は? 最後に、第3段階として、成長に応じた段階的な権限委譲とエンパワーメントが挙げられます。自己決定の幅を広げながら、失敗を学びの機会と捉える心理的安全性を保ち、メンバー間の相互支援を促す仕組みを整えることで、全体としての自律性と生産性の向上につながると感じました。

データ・アナリティクス入門

理想と現実を繋ぐ数値の声

あるべき姿って何? 今までは「あるべき姿」を、漠然と「ありたい姿」と「正しい状態」の二つの意味で使い分けずに運用していたことに気づきました。しかし、その区別を認識したことが今後の分析にどのような影響を与えるのか、正直なところ分かりません。今後その機会が訪れるのか疑問に感じています。 また、あるべき姿として何を設定するかを考えた時、以前はただ漠然と「こうなればいいな」と思う程度で、例えば急降下するグラフの曲線が鈍化すればよいという認識に留まっていました。今後は、より定量的に表現できる方法を検討していきたいと考えています。 早帰りは何故? 人の管理において、業務終了時間が18時であるところ、早帰りが認められている場合、退社が17時になると、早帰りする人は17時前に業務終了の準備に取り掛かり、17時ちょうどに退出するケースも出てきます。そのため、17時前のお客様からの問い合わせに十分に対応できず、お待たせしてしまう場面があるのです。 解決へ向かう道は? この課題を関係者間で合意のもと解決するためには、現状として17時前に何人が業務を離れているのか、またその時間帯にどの程度の問い合わせが発生しているのか、そしてその問い合わせにどの程度対応できれば問題ないのかといった、正しい状態を定量的に示す必要があります。これを踏まえ、現状を関係者間で共有し、合意形成を行った上で、解決手段を検討していきたいと思います。 まずは現状分析として、以下の点を把握する必要があります。 ① 17時前の人数 ② 17時後の人数 ③ ①と②の差から算出される早帰り人数(すなわち、17時前における作業可能人数の減少) これらのデータや、該当する時間帯の問い合わせ件数を数週間にわたり収集し、現状を明確にします。その上で、現状と理想の正しい状態が何かを議論し、あるべき姿を決定します。そして初めて、どのように問題を解決するか(how)の議論に入ることができると考えています。 これまでは、関係者間で現状のすり合わせを十分に行わずに解決策(how)のみを議論していた点を反省し、今後は一歩ずつ着実にステップを踏んで進めていきたいと思います。

リーダーシップ・キャリアビジョン入門

学びの気づき、未来への一歩

本当の欲求は何? 人の欲求には、生理的欲求や安全・安定性の欲求、社会的欲求、承認欲求、そして自己実現欲求といった段階があり、より高い次元の欲求が十分に満たされなければ、モチベーションの維持に支障が生じることがあります。モチベーションを高めるためには、相手を尊重しながら目標を共に設定し、必ず振り返りとフィードバックの機会を設けることが重要です。振り返りに際しては、具体的な成功体験や課題について、自分自身の言葉で語ってもらい、その中から教訓や気づきを抽出して、今後の取り組みに反映させるよう努めます。 目標設定ってどう? このアプローチは、病院で各診療科の目標設定面談においても活用されています。各診療科のリーダーが、自身がどの段階の欲求を満たされているのか、また何が不足しているのかを自己評価する機会となり、まず現状を説明してもらいます。その上で、動機付けとなる要因を満たすために、リーダー自身が目標設定を行い、組織全体で共有する仕組みが取り入れられています。 衛生要因、大丈夫? また、面談の中では、組織の目標や要求を示しながら、同時に衛生要因に対する不満の有無も確認されます。リーダーがモチベーションを向上させ、リーダーシップを発揮して各診療科が自律的に成長できるよう支援することが狙いです。 面談後の確認は? 年度初めには、こうした考え方を踏まえた目標設定面談が実施され、目標がコンフォートゾーンにとどまらないようサポートされます。その後、四半期ごとに振り返り面談を行い、各診療科のリーダーから現状を具体的に報告してもらい、成功点や今後の課題が共有されます。成功や業績に対しては、すぐに金銭的なインセンティブが与えられるわけではありませんが、十分な称賛を送り、組織として継続的に支援する方針が示されます。 教訓や気づきは? さらに、達成できた点やできなかった点から得られた気づきや教訓をリーダー自らの言葉で語ってもらい、他の診療科にも参考となる一般化・抽象化が図られます。これにより、良かった点を踏まえた今後のプランが策定されると同時に、衛生要因への不満が抽出され、改善すべき点の検討も進められます。

データ・アナリティクス入門

データで掴む!即効性のある仮説検証術

仮説の設定と共有はどうする? 「仮設の設定」 何が(what)、どこで(where)問題が発生しているのかという視点で考えることが求められます。その際、3Cや4Pのフレームワークを用いることで、網羅性を確保できます。自分自身の仮説を持つことも重要ですが、独りよがりにならないように、複数人で仮説を出し合うことが大切です。さまざまな視点で仮説を考えることで、より豊富な仮説を出すことができます。そして、その仮説がなぜ(Why)起こっているのかを考え、解決策(How)を導き出します。 仮説の検証はどのように行う? 「仮説の検証」 解決策(How)として妥当かどうかを検証する際には、立証したい仮説に偏ったデータ収集は避けます。他の仮説を立証するようなデータも含めて、客観的にデータを比較することが重要です。これにより、仮説の説得力が強まり、仮説から導き出される結論(意思決定)の実効性も高まります。どんな単位を使ってデータを比較するのかや、主張したい仮説をいかに端的に説明できるかを慎重に考える必要があります。 データ分析で何を重視する? 「仮説の共有」 特に組織においては、「問題解決の仮説」から導き出される「結論の仮説」を実行する際に、コミュニケーションの課題が発生します。自身の仮説を客観的に立証した上で、共有するための仮説を立てる必要があります。 自身の仕事の一つの課題として、ドライバーの待機時間の削減が挙げられます。得られたデータから平均値を算出し、標準偏差も計算します。そして、組織として持つべきKPI値(平均値・標準偏差)と比較します。そのうえで、KPI値未達の箇所(Where)に注目し、なぜ(Why)未達なのかを関係部門と数値を見ながら考えます。その後、仮説の設定(問題解決方法 How)を行います。 まずは、得られたデータから平均値と標準偏差を算出します。次に、得られた平均値が妥当なのかを標準偏差から検討します。標準偏差を悪化させている要因(外れ値)に注目し(Where)、なぜ外れ値が発生しているのかをプロジェクトメンバーと意見を交わして(Why)、直近で必要な対策(How)を考えます。

データ・アナリティクス入門

分解思考で掴む未来へのヒント

理想と現実の違いは? 問題定義については、常に「あるべき姿」と現実とのギャップを意識し、そのギャップを埋めるために関係者と共通認識を持つことが重要だと感じました。 分解法の違いは? ロジックツリーには、「層別分解」と「変数分解」が存在します。私自身はこれを「足し算分解」と「掛け算分解」と表現しています。加えて、感度の良い切り口を多数持っておくことも大切ですが、これが自分の長年の課題となっています。 大枠から取り組むのは? 問題分析を行う際は、まず大きな枠組みから着手することが肝要です。私は計数業務や人材育成、組織開発を担当しているため、さまざまな場面でこのアプローチを用いています。 評価の焦点は? 具体的には、売上や予算を検討する際には、分解を通じて問題の大きさや影響範囲を特定するよう努めています。また、人材育成の方法を考えるときには、何が効果的かを明確にするために要素を分解し、議論を深めています。 要因の絞り方は? さらに、組織の問題に取り組む際は、組織のありたい姿を定義した上で問題を分解し、その要因候補を絞り込む作業を重ねています。 成果物はどう捉える? また、業務のアウトプット分解についても考えさせられます。業務を成果物と、それを生み出すアクションに分解し、受け取り手の観点から何が必要かを吟味することが、業務完了に向けた重要なポイントだと感じています。 分類項目のコツは? 売上や予算の項目に関しては、適切な分類項目の設定が、事業の推進状況を的確に把握するために役立つと考えています。 育成理論を再検討? 人材育成の観点分析では、人の性質や評価の項目化は進んでいる一方で、育成方法論についてはまだまだ整理の余地があるように思います。ここでは、「When」や「Where」といった切り口で新たな項目化ができる可能性があると捉えています。 数値評価の意義は? 最後に、組織の問題分析では、定期的な組織評価の数値を基に、課題項目がどの要素や要因に分解されるのかを試行することが、今後の改善に向けた有効な戦略であると感じています。

「課題 × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right