デザイン思考入門

挑む受講生が描く学びの軌跡

どの手法が有効? 私の業務では、主に三つの手法を活用しています。まずA/Bテストでは、メール告知に取り入れる際に、カラーや情報の提示順序などの要素を変更しながら検証を行います。数値化可能なクリック率やコンバージョンの結果をもとに、効果を測定しています。 参加型はどう活かす? 次に、参加型デザインです。アンケートの回答からユーザー視点での改善点を抽出し、定期的に開催するセッションでは、複数のロイヤルユーザーの意見を自由に出してもらいながら改善策を模索しています。 インタビューで何を引き出す? さらに、インタビューも実施しています。購入の動機や使い方を詳しく聞き取り、限られた時間の中でユーザーの意見を引き出すためには、ファシリテーション技術が重要であると感じています。なお、インタビューでは、自分の仮説検証において予想と異なる結果になることも多々あり、大きな声を持つ一部の意見に左右されず、冷静な判断が求められると実感しています。また、求めるデータの種類に合わせて、最適な情報収集手法を選択することも大切です。 デザイン思考はどう磨く? デザイン思考については、明確なゴールが設定されているわけではなく、その時々で最高のものを作るために100%の力を注いでいる状況です。しかし、知れば知るほど「より良いものを」という気持ちが高まり、常にアップデートを重ねていくOSのようなものだと感じています。かつて先輩から「我々が作るものは常にβ版である」との言葉をいただいたことが、決して満足せず成長し続ける意欲に繋がっていると改めて考えるきっかけとなりました。

クリティカルシンキング入門

データ分析で見つける新たな可能性

情報はどう整理する? データを分析する際には、まず与えられた情報をそのまま受け取るのではなく、必要に応じて自分で欄を増やし、追加の情報を作成することが重要です。そして、その情報を視覚化し、絶対値だけでなく相対値も考慮しながらデータを評価することを心がけるべきです。 区切り方はどう決める? 次に、データを視覚化する際には、データの区切り方によって見える情報が異なることを認識し、自分の仮説が事実かどうかを確認するためにどの単位でデータを区切るかを慎重に考える必要があります。一番重要なのは、データをさまざまな切り口から分解し、単純に受け入れるのではなく、再度丁寧に考え直す姿勢です。 分解精度はどう向上? 業務においては、改善提案資料の根拠を示す際、日常的に発生する内容に対して、前回よりも今回、今回よりも次回と、分解の精度が向上していることを自分で確認しながら取り組むことが求められます。また、新しい運用の実施可否を判断してもらう際や、イベントのアンケート結果を分析する際、応対品質評価結果を分析する際にも、しっかりとしたデータの準備と分析が必要です。 事実確認は万全か? 確かな事実を分析するには、必要なデータが揃っているか、十分に分解されているかを事前に確認し、その上でデータ分析を開始するようにします。これにより、ただ手元にあるデータをそのまま見るのではなく、一時停止してデータを視覚化し、仮説が事実であるかを確認することを意識します。そして、MECEなどのフレームワークを活用し、抜け漏れがないかを確認した上で結論を導き出すことを心がけます。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

リーダーシップ・キャリアビジョン入門

やる気の秘密がここにある!

モチベーションの謎は? ヒトのモチベーションは主観的なものであるという考え方を学びました。そのため、モチベーションを上げる方法について尋ねられることが多いですが、結論として「ヒトのことはよくわからない」という視点を持つことが大切だと感じました。 フレームワークで理解? その上で、フレームワークを知り、それを活かすための知識を身に付ける必要があることも実感しました。ハーズバーグの衛生要因と動機づけ要因の2つを理解することで、不満や満足の状態がどのように変化するのかを考察しました。環境や金銭面は不満要因に分類され、改善しても必ずしも満足に結びつくわけではない一方、やりがいや承認は満足度に大きく影響し、不満要因にはなりにくいと理解しました。 メンバーの価値観とは? また、メンバー各々が何を大切にしているのか、その価値観をくみ取り、動機付け要因に働きかけることが重要だと学びました。特に、経験の浅いメンバーや自立性の低いメンバーに対しては、彼ら自身の自走力を引き出すための支援が必要です。その結果、私自身が新しいことにチャレンジできる時間を確保することにもつながると感じました。 困難にどう向き合う? 仕事においては、相手の状況や性格をよく観察し、どんな困難に直面してもあきらめず、成果を最大限に発揮するために徹底的に向き合うことを心がけています。現在はゴールデンウィークのため一週間休みですが、来週から改めてこの姿勢で取り組んでいく所存です。常に「イラッとせずに、根気よく。成果のために、諦めない」という意識を持ち続けたいと思います。

クリティカルシンキング入門

視点ひとつで未来が変わる

新たな発想は? 視点、視座、視野というワークを通じて、アイデアを広げる具体的なステップを学びました。各ステップで軸をずらし、視点を変えることで異なる可能性を引き出すアプローチは、短い時間でも新たな発想の扉を開く手法だと感じました。 批判的思考はどう? また、クリティカルシンキングという批判的思考法について学びました。一人でもテクニックを身につけることで、これまで経験してこなかった視点や発想に気づける点、そして周囲の意見を取り入れる大切さを再認識しました。この知見は、分析レポートの作成やデータの取り扱い、施策検討の場面で活かせると感じています。 レポートは分かる? 特に、分析レポートにおいては、読み手がアナリストだけでなく、企画者や経営層といった幅広い層であることを意識する必要があります。事実だけでなく、結果指標や売上といった視点でまとめるプロセスが、より分かりやすいレポーティングにつながると実感しました。 顧客体験を考える? また、企画者の意図や、提供するサービスがどのように顧客体験を改善するかを検討する際にも、今回学んだ視点の切り替えや多角的なアプローチは大いに役立つと考えています。 情報の真実は? そして、日々新聞や書籍などから情報を得る際には、事実と意見を明確に区別しながら、批判的な視点で読み解くことが重要だと感じています。題材を自分ごとに捉え、ベースとなる軸や書き手の意図を考慮しながら、自分なりの表現にまとめることで、本当に伝えたいことは何かを見極めることができると考えています。

データ・アナリティクス入門

未来を変えるデータの魔法

データはどう戦略へ? 講座全体を通じて、データ分析の重要性と問題解決のフレームワークが非常に印象に残りました。データ分析は、過去のデータを活用することで客観的かつ効果的な戦略の立案を支え、意思決定の根幹となります。また、4つのステップを用いる問題解決法は、複雑な課題を整理し、具体的なアクションプランを導き出す助けとなりました。グループワークでの意見交換を通じて得た新たな視点も、学びを一層深める貴重な経験でした。これらの学びは、今後の業務にも積極的に取り入れていきたいと感じています。 キャリア教育、なぜ必要? また、今回の学びは社員のキャリア教育や研修の現場にも十分に活かせると実感しています。社員のキャリアパスやスキルセットに関するデータを分析することで、効果的な研修プログラムの企画が可能になります。さらに、研修後の業務成果を比較分析することで、プログラムの効果を検証し次回以降の改善に結び付けることができます。社員のキャリア希望を正確に把握し、それに基づいた教育プログラムを設計することで、より有意義な支援が実現できると考えています。 改善はどう実現する? 具体的には、まず社員のスキルやキャリア希望に関するアンケートを実施してデータを収集し、その後、得られたデータをしっかりと分析します。分析結果をもとに効果的な研修プログラムを企画し、実施後は参加者からのフィードバックを反映させた改善サイクルを構築します。こうした取り組みにより、社員の成長を促進し、キャリア教育の質を一層高めることを目指しています。

戦略思考入門

挑戦と実践の成長ストーリー

どんな効果が期待? 新たな取り組みを実施する際には、まずコスト対効果を十分に考慮し、周囲の人々を巻き込んだ計画作りを行います。既存のノウハウや取り組みとのシナジーを見出すことで、より一層効果を高める工夫も大切です。また、現状を定量的に把握し、計画実施後に数値がどのように変化するかを予測することで、計画の有効性を具体的に見える化することが求められます。さらに、部門長や経営者の視点に立ってアプローチを考えることで、戦略全体の見直しにつなげることができます。 現場で何を議論? また、具体的な課題解決の現場では、人材育成、品質向上、業務効率化などに関する検討会で各施策を議論します。来年度に実施する中期経営計画では、目標設定、現状分析、課題の抽出、そしてKPIの設定が重要なステップとなります。これらを踏まえた上で年度ごとの取り組みを具体的に計画し、同僚や部下と連携して年度目標の達成に向けたマネジメントを実行していきます。 優先順位はどう? さらに、限られたリソースを有効活用するためには、優先順位の付けや不要な取り組みを削ぎ落とす意識が不可欠です。部下全員の取り組み状況を毎月トレースできるよう、簡易な確認体制を整えることも重要です。たとえば、係長に取りまとめを任せ、課題を報告してもらう仕組みがあると、係長のマネジメント力が向上し、その結果、上位者がより高い視点で戦略を考える時間を確保できるようになります。こうした仕組みが整えば、初期段階での気づきを着実に実践に移す余裕が生まれ、全体の効率も向上するでしょう。

リーダーシップ・キャリアビジョン入門

振り返る!成果と人間性の調和

マネジリアル・グリッド理論で何が重要? マネジリアル・グリッド理論では、業績への関心と人間への関心のバランスが重要であると感じています。特定の型が良いとは限らず、両方の観点を柔軟に持つことが求められるでしょう。私の職場では、結果だけに集中しがちで、人間への関心が低下していると感じました。やる気のない人を放置したり、自分でやった方が早いと考える点についても改善が必要です。 パス・ゴール理論の理解を深めるには? パス・ゴール理論においては、指示型、参加型、支援型、達成志向型の4つの区分があり、それぞれの理解が基本になります。区分にはとらわれず、状況によって臨機応変に対応することが理想的です。部下の適合要因は理解できるものの、環境要因を打破するのは難しいと感じます。 どうすれば人間への関心を高められる? 人間への関心を高めるためには、まず「結果を出す」という視点に加え、個々人の強みを伸ばし生かす視点を取り入れる必要があります。たとえば、参加型の手法を用いて他の意見を取り入れやすいコミュニケーションを心がけることが重要です。また、後輩が質問をしてきた際には、その背景を伝え、考える時間を与えることが大切です。これにより、後輩は自信を持ち、若い視点から新しいアイデアが生まれることを期待できます。 キャンペーン企画での意見収集の重要性 キャンペーン企画の際にも、すべてを自分で決めるのではなく、意見を積極的に収集し、皆で作り上げることで、やらされ感ではなく参加感を高められるように心がけたいと思います。

リーダーシップ・キャリアビジョン入門

知見を実践!柔軟リーダーの挑戦

リーダーシップはどう示す? パスゴール理論を学び、どんな仕事を誰を相手に進めるかを見極めた上でリーダーシップを発揮する必要があると理解しました。環境要件や適合要件によってアウトプットが変わり、成果に濃淡が生じることを実感しました。 また、四つの型に共通するのは、成果を上げるために最適な手段を用いるという点です。この考え方は、実践する上で非常に参考になりました。 実践事例はどうなる? 具体的な事例として、31歳の部下には指示型を用いました。早く独り立ちしてほしいとの期待がある中、先週参加型に変更したところ、何をすべきかわからなくなり泣かれてしまい、業務が遅延する事態が発生しました。この経験から、見極めを誤ると二度手間やチームの崩壊につながるリスクがあると痛感しました。一方で、53歳のメンバーは豊富な経験を持ちながら、31歳のメンバーに見切りをつける傾向にあるため、チームビルディングが一筋縄ではいかないことも理解しました。 今後はどう進む? そこで、今後は成果を出すために、53歳のメンバーとは積極的に意見交換を行い、31歳の部下には適切な補足説明をしながら進める方針です。まずは、このやり方で試してみようという決意を固めました。 さらに、会議ではチーム全員にやるべきことを共有し、関わるプロジェクトを難易度に応じて担当者に振り分け、その結果も全員に開示する予定です。タスクに対してスキルが十分でないメンバーには、補足解説を行いながら見捨てずにサポートしていく姿勢を大切にしたいと考えます。

リーダーシップ・キャリアビジョン入門

自分の強みと向き合い、リーダーシップを再定義した学び

自分のキャリア・アンカーを再認識 大きな喜びを感じた仕事を思い出す作業を通じて、専門性や技術を追求しながら常に挑戦し続けたいという自身のキャリア・アンカーを再認識しました。また、キャリア志向質問票による診断結果もほぼ変わらなかったことから、自己認識に確信を持つことができました。 誰もが成果を出せる仕組みとは? さらに、成し遂げた成果に対する社会的評価も求めていることが明らかになりました。WEEK 04のグループワークで、製品の開発過程において属人化をなくし、誰がやっても同じ結果になるよう仕組み化を進めている件について議論しました。その際、技術分野では属人化できる部分とそうでない部分の棲み分けがあっても良いのではないかという意見を頂き、これに安堵した自分の根源を理解しました。この経験を通じて、「この人にしかできない」という領域も大切にしていきたいと強く感じました。 自分に合った管理スタイルを探る 一方、キャリア志向質問票の診断結果では、全体管理コンピタンスの得点が最も低く、これは自分の価値観として存在していないことが確認できました。そのため、無理して全体管理を追求する必要はないと俯瞰することができました。 目指すべきリーダーシップ像は? 今週の学習を踏まえると、自分が目指したいリーダーシップ像は、「専門領域でのメンバーと大きな成果を成し遂げ、その感動と賞賛をメンバーと共有すること」であることがわかりました。このリーダーシップ像を軸に、小論文を完成させたいと思います。

データ・アナリティクス入門

振り返りから見える未来への一歩

原因はどこで? 問題の原因を探る際には、まずプロセスに分けて考えることが重要です。どの段階で問題が発生しているかを明確にするため、原因を細分化し、全体を俯瞰することが効果的です。一概に「どうすれば良いか」を変えるのではなく、判断基準に基づいて選択肢を絞り込むことが求められます。 解決策は何で? 解決策を検討する場合は、複数の選択肢を洗い出し、その中から根拠をもって最適な方法を選び出すプロセスが必要です。目的と仮説の設定、実行、結果の検証と打ち手の決定という流れをしっかり踏むことで、効果的な改善が可能となります。検証項目やテスト要素は一要素ずつ実施し、他の環境要因の影響を避けるために、同じ期間内での実施が望ましいです。 A/Bテストの真意は? また、A/Bテストはシンプルで運用や判断がしやすく、低コストで少ない工数、さらにリスクを抑えた状態での改善が期待できます。テストの目的や仮説を明確にし、数値化できるデータを用いることで、検証プロセスがスムーズに進み、次の仮説や決定へと繋がります。 ボトルネックの所在は? さらに、問題のボトルネックを考える際は、問題を発見するために「何が問題なのか」「どこで発生しているのか」「なぜ問題が起こっているのか」を多角的に検討し、プロセス全体を整理することが重要です。たとえA/Bテストがシンプルであっても、同条件に揃えることが難しい場合は、具体的にどの要素が影響を及ぼしているのかを洗い出し、最適なテスト方法を選択する必要があります。

データ・アナリティクス入門

ChatGPTで学びの視点を拡張する方法

ロジックツリーとMECEの限界は? ロジックツリーやMECEを使って考えると、一人での作業では思考に癖が出て、洗い出しが不十分だったり、偏った視点になりがちです。しかし、CHATGPTを活用することで、自分とは異なる視点から「漏れなく」洗い出せる可能性が高まることを実感しました。実際、学習の際にCHATGPTを利用した結果、より早く自分なりの答えに近づくことができました。 定量分析の視点の活用法は? 定量分析の5つの視点については、普段何気なく行っていたことが体系化されていることに気づきました。データ分析を行う際には、どの視点が最適か常に立ち止まって考えるようにしたいと思います。 CHATGPTの効率的な利用方法は? また、問題を洗い出す際にCHATGPTを活用することで、様々な視点から効率的に問題点をリストアップできるようになりました。以前はこの作業に多くの時間を費やしていましたが、CHATGPTの登場により時間的コストが大幅に削減されました。学習ではコストと見合った洗い出しが重要だと教えられましたが、短時間で漏れなく洗い出すことを優先すべきだと感じています。 独自プロンプトの効果は? さらに、問題の洗い出しをスムーズに行うために、自分独自のプロンプトを考案しました。問題洗い出しの場面では、そのプロンプトを使って多様な視点から問題をリストアップすることを徹底しています。また、このプロンプトは従業員にも共有し、同じような場面で活用してもらうようにしています。

「結果 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right