アカウンティング入門

実践で学ぶ本気の事業計画

事業開始のコンセプトは? 事業を開始する際は、まずコンセプトを明確にすることが求められます。そのコンセプトが、競争社会の中で勝ち得る技術や差別化の要素を備えているかどうかをしっかりと確認することが重要です。 資金計画はどうする? 次に、コンセプトを実現するために必要な具体的な費用を試算します。この費用の算出時には、キャッシュで対応すべきか、あるいは銀行からの借入れなど別の資金調達手段を検討する必要があります。現実的な資金計画を立てることが、事業成功の鍵となるのです。 投資試算の基準は? また、普段の研究開発業務の初期段階や、個別のプロジェクト検討時にも、開発費や投資額、商品の市場投入までの期間、予想される収益を試算することが大切です。最低限の黒字ラインや、これ以上の黒字が見込める場合にプロジェクトを実施する判断軸を用意し、それが自分だけでなく他者にも納得してもらえるよう、幅広い観点から検討する必要があります。 情報収集は十分? さらに、ビジネス雑誌やニュースに日頃から関心を持ち、他業種のビジネスプランや決算情報を解析する習慣を持つことがポイントです。こうした情報収集を継続することで、現場で実際に資金を管理する部門と積極的に連絡を取りながら、より広範な知識と情報を得ることが可能になります。

データ・アナリティクス入門

直感だけじゃ辿り着けない未来

直感は信頼できる? 普段の仕事やデータを扱う際、経験や直感に頼った仮説が基本であったことを改めて実感しました。データ分析そのものではなく、むしろデータ収集の段階で不足している点が原因だったと考えています。この経験が、部門費などの予算策定時における変化の捉え方を再見直すきっかけとなりました。 予算根拠は正確か? 部門費の策定根拠や、今後の設備投資に関する理由付けについては、未来を見据えた考察が十分でなかったと感じています。何か異変があった場合の修理費用が予算に計上されず、過去の事例や頻度を確認することで、適正な管理につながる一手段としたいと思います。 委託実態はどうだ? 請負会社に業務を委託している現状では、作業の安定性はもちろん、雇用期間が短期に終わる点にも課題を感じています。労働内容に加え、職場環境も影響していると考え、既に委託から10年が経過している案件も多いことから、改めて状況把握から始めたいと思います。 記録整備は必要? 具体的には、請負会社で働く方々の実務経験年数や年齢層などの基本情報の収集を行い、当社を離れる理由なども可能な限り情報として集める予定です。また、設備投資に関しては、過去の作業記録のデータベース化が未実施であるため、そこから着手する方針です。

戦略思考入門

規模経済の真実に迫る学び

本当に規模の経済は信頼できる? 今週の学びで特に印象に残ったのは、規模の経済性の演習回答にあった「もっともらしく聞こえる定石であっても、自社が置かれた状況に必ずしも当てはまるとは限らない」という点です。普段は規模の経済性を当然のことと考えがちですが、固定費や変動費の区分だけでなく、時期や機会といった変動要素も考慮することで、より多角的な分析ができると感じました。 不経済と習熟はどうなる? また、規模の経済性に加えて、規模の不経済性がどのタイミングで発生するのか、自分自身の業務においても分析してみたいと思います。習熟効果については、ある一定の動作を繰り返す業務やイレギュラーの少ない業務であれば、OJTの効果により短期間で自然と身につくと考えられます。一方、部門や担当者の業務範囲が広く変動が伴う場合は、習熟効果を得るまでに時間がかかり、一定の水準に到達する前に離職リスクが高まる可能性もあります。そのため、各業務ごとに期待する習熟レベルや期間を明確に設定する必要性を実感しました。 接続はなぜ切れた? なお、グループ討議中にオンライン会議システムの接続が切れてしまい、申し訳ありませんでした。19時過ぎであったためか、サイトのリンクが切れて戻ることができませんでした。

デザイン思考入門

小さな挑戦が未来を変える

未知の内容は何? アクセシビリティやユーザビリティ、ワイヤーフレーム、モックアップなど、今まで触れたことがない内容に触れる貴重な機会となりました。これらの学びは、今後の業務で新たなサービス構築に活かせると感じています。たとえば、スモールスタートでサービスを展開し、得られたフィードバックをもとに徐々にバージョンアップしていく運用を具体的にイメージすることができました。 迅速な実践とは? また、プロトタイプ開始までのスピード感の重要性も実感しました。ある程度形ができた段階で早めにフィードバックを得るために動き、その結果を踏まえて改善を繰り返すプロセスが大切です。その際、完璧を目指さずに、試作品として進める心構えが必要だと感じます。あまりにも良いものを作ろうとしてこだわりすぎると、スタートが遅れたり修正が困難になったりするリスクがあります。 試作と挑戦は? プロトタイプはあくまで試作品であることを念頭に置き、失敗を恐れずに積極的に挑戦する姿勢が求められます。フィードバックやエラーをしっかり受け止め、改善を継続していく粘り強さも重要です。一方で、プロトタイプの期間を適切に区切らないと、正式ローンチが遅れる可能性もあるため、バランス感覚を磨く必要があると感じました。

戦略思考入門

優先順位で事業成功を掴む方法

判断基準をどう考える? 戦略的な選択を行うためには、優先順位づけをする際の判断基準を明確にすることが重要です。情報が不足している場合は、仮説思考を活用し、複数の仮定を設定して検討することが求められます。判断基準を考える際は、複数の視点から多角的に検討することが効果的です。優先順位をつけるということは、優先対象を決めるだけでなく、優先しないものを切り捨てる選択も含まれます。 国際事業の戦略は? 現在、私は4カ国で事業開発に携わっていますが、すべての国においてコミットしており、その結果、市場での優位性や取り組みの実現可能性が低い国にも一定のリソースを割いてしまっていることが課題となっています。このような状況では、捨てる選択をすることが必要とされています。 合理的選択の基準は? 選択を合理的に行うために、以下の判断基準を設け、客観的に事業開発に取り組む考えです。それは、(1)市場において当社の優位性があるか、(2)短期間で成果達成が可能か、(3)取り組みに十分なリソースを割けるか、(4)本社の戦略に合致しているか、という基準です。12月までにこれらの基準に基づき、取り組む事業を絞り込み、各事業のタイムラインやチーム体制を明確にして関係者からの合意を得ることを目指します。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

アカウンティング入門

BS活用で知る!財務の新たな視点

BS事例で何が見える? BSに関してはあまりなじみがありませんでしたが、具体的な事例を通じて学ぶことで、コンセプトとBSの構成との関連性が理解できるようになりました。また、借入に関してもさらに学びたいと思っています。具体的には、どのくらいの借入がどれくらいの期間で返済可能なのかを知りたいです。金融機関からの借入方法として、NPOバンクやクラウドファンディングを検討することも考えていますが、それらの違いについても理解を深めたいです。 ボランティアでどう活かす? 仕事以外の面では、ボランティア活動で融資審査のような業務をする際に役立てたいと考えています。各項目の適正なバランスを知り、企業のコンセプトと一致しているのか、借入金の負担や返済可能なラインについても把握したいと思っています。 財務指標の意味は何? さらに、流動比率や固定比率のバランスを見て、顧客企業の財務状況を把握することも重要です。その際には疑問に思うことがあれば、自分で考えたり、他の人に聞いたりして解決していきたいと思います。また、PLとの関連性を学ぶことで、次に学ぶCFと合わせて財務諸表を総合的に読めるようになることを目指しています。

データ・アナリティクス入門

あなたを動かす学びの4視点

本質問題、どう捉える? 今回の学習では、問題解決のための4つの視点――What、Where、Why、How――を意識する重要性を学びました。特に、解決すべき本質的な問題(What)を明確にし、理想と現状のギャップを把握することが、メンバー間の認識のズレを防ぐ上で非常に重要だと感じました。 サービス提供は課題? また、長期的な利益向上のためには生徒数の増加が求められる一方、現状のサービス提供体制ではスタッフへの負荷増大や顧客満足度の低下といったリスクも伴います。これに対し、各講師が対応可能なクラス数や新人講師の育成にかかる期間・コスト、顧客満足度に影響を与える要素など、具体的な定量データを基に現状を整理し、対策の優先順位を明確にすることが必要だと実感しました。 日常業務、どう対処? さらに、日常業務においても、状況把握や効果検証、施策の試算などのプロセスにおいてWhat、Where、Why、Howの視点を取り入れることが重要です。分析開始前にロジックツリーなどを用いて問題の全体像を整理し、関係するメンバーと認識を共有することで、より精度の高い対応策を講じることができると感じました。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

「可能 × 期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right