データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

データ・アナリティクス入門

数字と論理で未来を切り拓く戦略

何が問題なの? 直面している課題や状況を整理する際、まずは「何が問題なのか」「どこに課題があるのか」「その原因は何か」をはっきりさせ、さらに原因に応じた有効な解決策を検討するプロセスの重要性を改めて実感しました。複数の切り口から状況を把握し、定性的な評価も加味しながら優先順位をつける方法は、日々の業務や計画作成にとても役立っています。 現状のギャップは? また、「あるべき姿」と「現状」とのギャップを定量的なデータで示すことで、問題の本質が明確になる点も印象的でした。具体的な数値やトレンド、ばらつきまで丁寧に分析することで、正しい状態へ戻すための対策が見えてくると感じました。こうした定量分析の視点は、実際の現場での判断材料として非常に有用です。 サンクコストは? さらに、サンクコストの考え方にも気づかされました。すでに支出してしまったコストに固執せず、未来のために合理的な判断を下すことが大切であるという点は、今後の意思決定に活かしていきたいと思います。 MECEの意味は? 最後に、MECE(もれなくダブりなく)を意識してロジックツリーを用いながら事象を整理する方法も、新たな視点として非常に学びになりました。事象を年齢や季節、販売数などさまざまな要素に分解し、全体像を捉える努力は、複雑な問題に対処する上で大いに役立つと感じています。 学びはどう活く? 以上の学びを踏まえ、①定量的データに基づく現状把握、②優先度や重要度を考慮した計画立案、③場面ごとのMECEの適用というプロセスを、今後の日々の業務に活かしていきたいと考えています。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

クリティカルシンキング入門

考えを広げるクリティカルシンキングの力

自分の考えは正しい? 人は「考えたいこと」に囚われがちであり、その考えは容易に偏ったり誘導されたりします。そのため、客観的な視点、すなわち「もう1人の自分」を意識し、本当にその考えで良いのかを疑うことが重要です。 どう鍛えるべき? クリティカルシンキングを身につけるためには、日常的に繰り返し練習することが必要です。「本当にそれでいいのか」「他に視点はないか」といった疑問を常に思考に組み込む習慣をつけることで向上します。具体的には、クライアントへのメールや1on1の場面、家族との何気ない会話の中でもトレーニングを行うことが可能です。 他人の意見を聞く? 自分の論理を優先しがちですが、他人の意見から学ぶことが多い場合もあります。業務においては、例えば自社の損益にばかり気を取られ、クライアントの立場や利益を考慮しないことがあります。偏見に囚われず、フラットな姿勢で他者の話を聞く意識が必要です。 他の提案はどう? クライアントへのサービス提案時には、「これ以外の方法はないか」や「逆に〇〇のサービスはどうだろう」といった問いを自分に投げかけ、さまざまな視点から提案内容を考えることが鍵となります。提案する際にはシンプルさを心がけ、「なぜならば」という論理的な展開で一貫性を持たせます。そして、フィードバックを受ける際には偏りなく意見を聞く姿勢が求められます。 多角的な視点で? チームの目標設定においても、課題を分析し、「他の視点は?」と多角的な視点を考える必要があります。また、他のチームからの評価を通じて客観的にチームの強みや弱みを見極めることも重要です。

戦略思考入門

ビジネス効率を左右するシナジーの真実

経済性の理解は十分? 規模の経済や不経済、範囲の経済、ネットワーク効果といった概念を正しく理解することは、事業経済性のメカニズムやビジネス法則を誤らないために必要です。特に、指数関数的に変化する現代では、テクノロジーがキーワードとなり、迅速な対応が競争の基盤となっています。 シナジーは本当に有効? 学んだことの一つに、「シナジーは本当にあるのか」という点があります。既存の資源を活用して効率的にビジネス展開を行うことが一般的ですが、その方法が本当に効果的なのか、既存資源が競争優位性として本当に機能しているのかを慎重に分析する必要があります。シナジーが逆に非効率的になることもあるからです。 部署異動は効果ある? 自社業務に当てはめて考えると、社内異動が範囲の経済に関連するのかという疑問が生じます。現在所属している技術部から、将来的にマーケティングや営業など他の部署への異動を考慮していますが、過去の知見や経験を新しい部署に活かすことでシナジー効果が本当に生まれるかという点について考えたいです。これをどのように分析し、判断すべきなのかを検討しています。 兼任制は効率化? また、組織内で兼任制を採用しており、ISO監査やプロジェクト管理、営業活動を行っていますが、規模の経済性から見るとこの方針が適切かどうかも重要な検討事項です。このようなことも鵜呑みにせず、メリットとデメリットをしっかり整理し、分析する習慣を持つことが大切です。指数関数的に変化する時代において、判断に迷う場合はまず行動を起こし、やりながら調整しつつスピードを出すことも求められていると感じます。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

戦略思考入門

リソースを活用した効果的な学びの秘訣

リソースの投入はどう? リソースは限られているため、最も効果的な場所にリソースを投入する必要があります。そのためには、優先順位を明確にし、判断基準をしっかり持つことが重要です。事例で学んだROI(投資した資本に対して得られる利益の割合)は非常に参考になりました。また、手元に判断材料がない場合には、仮説思考を活用して検討を進めることも有効です。異なるパターンを考慮し、ポジティブ、ネガティブの両面から設定を検討するのもよい方法です。複数の視点を持って考えることは、ビジネスの複雑な状況において必要不可欠です。 ROI評価、改善は? 判断過程でROIが低い業務は、思い切って見直すべきです。戦略においてはメリハリをつけて判断し、数値に基づいて決断することが求められます。 業務の見直しは? 自身の業務を見直す際、費用対効果を考えてみます。時給9千円に見合っているかどうかも考慮します。 業務改善の具体策は? - **帳票管理** 帳票の整合性確認に時間がかかっているため、これを自動化することを検討します。 - **報告資料** 報告内容が多く、時間がかかるため、上司が使わないであろう報告内容は簡略化します。 - **新規顧客獲得活動** マッチングプラットフォームを用いた活動で受注率が低いため、自組織の強みを活かした案件にシフトし、紹介活動に力を入れます。 - **活動行動ログ** より良い目標に向かうために活動の目標を明確にし、それに基づくデータを再確認します。正しい分析を行うために、ゴミデータの除去も意識します。

戦略思考入門

学びの視点を広げる新しい戦略

学ぶ視点を広げるには? 勉強を続けるための考え方を改めて見直す必要があると感じました。特に、人を巻き込むことで他者の意見を聞き、広い視点で学ぶことができるため、思考の幅が広がり刺激を受けます。それにより、継続的に取り組んでいくことが可能になります。しかし、時間の使い方はまだ定着しておらず、課題に取り組む際には想定以上の時間がかかっているのが現状です。 理想像を描くプロセスとは? 自己の理想像を描くことの重要性を強く感じました。そのためには、現状を幅広い視点から把握する必要があります。これは、理想の姿やその道筋が時折変わるためです。 効果的な戦略策定のステップ ちょうど業務で戦略を考えるタイミングにあったため、以下の理解や取り組みがスムーズでした。まず、中長期(3年後)の目標、すなわちありたい姿を設定します。その目標を達成するための課題を明確化し、現状把握に基づいて課題を克服するための短期計画を立てました。 さらに、戦略策定ワークショップを実施し、様々な視点で物事を考える環境を整えました。また、関係者との情報共有を積極的に行い、助言を得ることで他者の意見を収集し、視点を広げました。 コミュニケーション戦略の分析方法は? サステナビリティ・コミュニケーション戦略を策定する際には、現状分析にも力を入れました。具体的には、自身が担当してきたコミュニケーション業務の結果や効果の確認、現状の各ステークホルダーとのコミュニケーションの洗い出し、結果と効果の確認、社外評価の分析などを行いました。これにより、戦略策定がより具体的で効果的なものになりました。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

クリティカルシンキング入門

ピラミッド・ストラクチャーで説得力アップ!

ピラミッド・ストラクチャーの効果とは? ピラミッド・ストラクチャーの活用により、情報を相手に伝えやすくなることを学びました。この方法を使うことで、自分自身でも論理の妥当性をチェックしやすくなり、説得力のある内容に仕上げることができます。また、「隠れた主語」がないかを確認する視点を持つことが重要だと感じました。日常生活でも主語や述語は意識しているつもりですが、テキストコミュニケーションでは特に「隠れた主語」を意識できていないことに気づきました。さらに、複数の具体をまとめる力が不足していると感じ、演習を通してこの点を克服する必要があると実感しました。「クリティカル・シンキング入門」からさらなる成長を期待しています。 データ分析での工夫は? 私の職務は、データ分析を通じて事実を伝え、示唆を出すことです。特に事業部長への説明が多いため、準備の際にピラミッド・ストラクチャーで内容を整理することが有効だと感じました。また、私以外のチームメンバーが本社勤務であるため、チャットツールでのコミュニケーションが頻繁です。認識の齟齬を防ぎ、一度で伝えたいことが伝わるようになれば、コミュニケーションコストを削減できると考えています。 コミュニケーションコストをどう削減する? 会議の準備段階では、言いたいことをピラミッド・ストラクチャーでブレイクダウンして整理しています。また、チャットを送信する前には「隠れた主語」がないかを毎回チェックします。面倒に感じることもありますが、この作業の徹底が双方のコミュニケーションコストを削減することにつながると考え、実践を心がけています。

クリティカルシンキング入門

クリティカルシンキングで自分を再発見

振り返りの3つの学びとは? WEEK1の受講を通じて感じたこと・印象に残ったことは主に以下の3つです。 1. 考え方には偏りがでること 2. クリティカルシンキングは考え方の土台であること 3. 大事になってくるのは『3つの視』 これらが非常に大切なことだと感じました。 直感からの視点転換が重要 以前の私は、考え方が直感に偏っていました。しかし、その直感から一度立ち止まり、「本当にそれで大丈夫か?」と考えることの重要性に気づきました。自分の考えを客観的に見直し、異なる視点で切り口を変え、分解して突き詰めていくことが必要です。このプロセスが問題や課題の根本に辿り着き、チームと自分自身を正しい方向に導いていくのだと確信しました。今後もこの考え方を意識し、自分の土台を常にアップデートし続けていきます。 具体的な実践方法は何か? 具体的な実践としては以下の3つを考えています。 1. 業務改善の提案:先方が感じる課題の根本的要因を考え、適切な提案を行います。 2. 業務設計の構築:目の前の手法に固執せず、本質を見落とさないように設計時の目的や課題点を多角的に分析し設計します。 3. 繰り返し行動する:これまでの思考や行動の習慣から脱却し、考える機会が訪れた際には必ず一度立ち止まり、客観的に考える力を養います。 記録と分析のプロセスをどう活かす? また、考える際は頭の中だけで解決しようとせず、一度文字に起こして考えを整理します。外に出すことで、異なる視点から物事を見ることができ、より客観的かつ分解しやすくなるため、この方法を実施していきます。

データ・アナリティクス入門

ロジックツリー活用でKPI改善を目指す!

ロジックツリーって何? ロジックツリーの使用方法について新しい発見がありました。ロジックツリーには、変数分解に加えて「層別分解」という使い方があるのです。層別分解は、全体を複数の部分に分けて同じ次元で揃える方法で、それぞれの階層の下には同じ要素が並ぶイメージです。一方で変数分解は、要素の掛け算を分解し、原因を特定するのに役立ちます。これらの手法を試行することにより、より包括的で明確な分析が可能になります。 営業支援機能はどう? R&D部門における営業支援機能のひとつとして、顧客向けPoCの作成や自社商材のクロスセル・アップセルの立案があります。しかし、これらの活動においてチームのKPI進捗率に大きな差が見られます。そこで、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することが重要です。一連の要素には、要素A→B→C→PoC作成→D→E→クロスセルなどがあります。 KPI設定は見直す? 目的は、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することです。このために、まず関係者とブレストを行い、現在の管理状況に関わらず関連しそうな要素のアイデア出しを行います。その後、出てきたアイデアを元に、現在のKPI設定が定量的かどうか、またMECE(Mutually Exclusive and Collectively Exhaustive)であるかを検討します。このプロセスの中でロジックツリーを使用し、特に不慣れな現在は層別分解と変数分解の両方を試し、それぞれの使用感をメモしておくことが有効です。

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right