クリティカルシンキング入門

広がる視野、深まる論理

「思考のOS」とは? クリティカルシンキングの「思考のOS」という表現がとても印象的でした。基本となるスキルをしっかりと固めることで、さまざまな業務の場面での活用が期待できると感じています。 どうして深掘りする? 今回学んだのは、問題に対してすぐ結論を出すのではなく、多角的な視点や広い視野で物事を深掘りすることの大切さです。目的意識を持ち、自分の思考のクセを把握し、常に問い続けることで、より論理的な判断ができるようになると実感しました。 失敗から何を学ぶ? 実際の業務での失敗例から、多角的な視点が欠けると、一方的な成功事例を他の現場にそのまま適用してしまい、急激な変化をもたらすことで反発を招くリスクがあることが明らかになりました。これを教訓に、今後は自分の経験や希望だけに依存せず、さまざまな角度から物事を検証する習慣を身につけたいと思います。 どう整理すればいい? また、考えを整理するためには、しっかりと言葉にすることが有効です。実践演習や振り返りを丁寧に行い、自分の思考をさらに深める努力を続けたいと考えています。 転向成功の秘訣は? さらに、今年は営業職への転向を目指しているため、社内転職を成功させるための具体的な行動計画を立てています。顧客の課題を的確に理解し、共感し、適切な提案ができるスキルを身につける必要があります。幸いにも、社内では営業職向けのロールプレイが活発に行われているため、来月のロールプレイの機会を利用し、今回クリティカルシンキングで学んだ内容を実践してみる予定です。 なぜ顧客目線? 具体的には、まずは身近な企業をイメージし、その業界のトレンドや共通の課題を洗い出すために思考ツリーを使って項目を整理し、架空の顧客像と課題設定を行います。次に、「なぜ自社のサービスが必要なのか」という視点を、単にベンダーとしてではなく顧客目線で考えるプレゼンシナリオを作成し、複数の立場のレビュアーに意見を求めることで、内容の偏りを防ぎたいと思います。 アイデアの源は? そうは言っても、どうしてもアイデアが浮かばなくなった場合、皆さんの実体験や工夫された方法をぜひお聞かせいただきたいです。

クリティカルシンキング入門

多角的思考で未来を拓く

思考の偏りはなぜ? 人の思考には偏りがあり、自由に発想できる状況下でも無意識に制約を設けてしまうことが多いと感じています。クリティカル・シンキングは、物事を適切な方法で、適切なレベルまで考える思考法であり、コミュニケーションや問題解決の基盤となると実感しています。 視点の整理って? 例えば、物事を見る際には「視点」「視座」「視野」という3つの切り口を用い、MECE(漏れなくダブりなく)に整理することで、思考の偏りを防ぎ、全体像を的確に捉えることが可能です。日常の問題をこうした方法で整理すれば、論点の見落としや前提の違いに気づくことができ、他者と共有しやすい形にまとめられます。 業務改善の視点は? また、業務フローの見直しの場面では、「現状に問題はない」という意見があっても、その背景や前提条件を丁寧に掘り下げることで、より効率的で本質的な改善策にたどり着けると感じています。自身の考えを伝える際にも、根拠や構造を意識して説明することで、伝わりやすさが格段に向上すると思います。 育成の多角的視点は? チームメンバーの育成においても、単に答えを示すのではなく、問いかけや多角的な視点を提供することで、メンバー自身が主体的に考えを深められるよう努めたいと考えています。物事を鵜呑みにせず、構造的かつ多面的に捉える力を身につけることで、納得感のある判断や建設的なフィードバックが可能になるでしょう。 要素分解の大切さは? 具体的には、思考を要素分解して整理する力をさらに強化する必要があると実感しています。自分が把握している範囲で要素を洗い出すことは得意ですが、偏りや盲点があるため、より幅広い観点からの検証が求められると感じています。そこで、分解する際の観点や情報の調べ方を習得することで、日々の実践力を向上させられると考えています。 生成AI活用の効果は? 直近の取り組みとしては、生成AIを活用して要素の抜け漏れがないかをチェックする運用を取り入れる予定です。業務設計の初期段階では、まず自分が洗い出した要素をAIに入力し、出てきた情報を元に再検討することで、最終的に関係者に納得してもらえる形に整理していきたいと考えています。

データ・アナリティクス入門

問題解決を加速するストーリー設計

問題解決の本質は? ストーリー設計は、問題解決に向けた重要な要素です。分析に取り組む前に、解決したい問題を明確にし、結論のイメージを持つことが必要です。これにより、分析のプロセスが円滑に進められます。 仮説思考で何を見る? 分析のプロセスには、仮説思考のステップがあります。まず目的を設定し、仮説を立て(多少外れても問題ありません)、データを収集して検証します。また、5つの視点を持つことが重要です。インパクト(どれだけ影響を与えるか)、ギャップ(違いを見つける)、トレンド(時間の中での変化)、ばらつき(分布を見極める)、パターン(法則性の有無)を確認します。アプローチは、グラフや数値、数式を活用して進めます。 学びの次の一歩は? 今後の学習においては、考えを言葉にする「言語化」や本質を見抜く力、自分ごと化が重要です。また、「ありたい姿」に向けてのチェックポイントとして、具体性や意義、挑戦性、現実性を考慮し、モチベーションを維持する仕組みを構築する必要があります。 役割と判断の秘訣は? 私に求められている役割は、販売全体の動向を注視し、適切な配分調整で営業利益を達成することです。さらに、働きやすい環境作りや各自が能力を向上できる環境整備を推進します。そして、上司や部下、社外の方々と積極的にコミュニケーションを取り、一方的に考えを固執せず、全体最適な観点で判断を行います。大局的な会社の方針や戦略、動向を踏まえた部門運営を明確に提示し、決断します。 現状改善の策は? 会社のDX推進プログラムにエントリーし、具体的な課題解決に取り組んでいます。例えば、Web関連の各種KPIを全社の目標と関連づけ、可視化することが求められています。これは、WebのKPIが達成されても営業利益が未達成となる現状を改善するための施策です。また、プロモーションを投資対効果で判断する仕組みが必要とされています。さらに、データを活用できる人材の育成も重要課題です。専門的な分析を行う人材と、日々の判断を容易にするためにデータを活用する人材を育成する方針です。 今後の学びはどう? 以上の取り組みを通じて、今後も必要なスキルの向上や新しい学びを続けていきます。

クリティカルシンキング入門

イシュー特定力で課題解決を劇的に改善

イシューとは何? 課題解決において最も優先すべきことは、今回の主題である「イシュー」の特定です。イシューが何であるのかをはっきりさせないまま対策を講じると、解決する必要のない課題に労力と予算を無駄にしてしまうかもしれません。また、根本原因を解決できずに、対処療法に終わる可能性もあります。そのため、まずはイシューを特定することが重要です。 目的は何だろう? 現在直面している課題に対しては、以下の順序で考えることが推奨されます。まず、目的は何であり、最優先事項は何かを明確にします。その上で、その目的のためにその課題が解決すべきものであるか、またその優先度を評価します。もし解決するべきであれば、その課題の真因が何であるのかを考えます。 データで何が見える? 次に、真因を特定するためにデータを活用します。データをグラフで視覚化したり、その間隔を調整したりすることで、新たな視点が得られることがあります。そして、そこで見えてきたことに対して解決策を考えます。この解決策を考える際には、ピラミッドストラクチャーに整理することが重要です。これにより、どの課題に対して解決策を考えているのか、その解決策が本当に適切であるかを把握しやすくなります。 日常で何を学ぶ? 自分の会社でも、日々このような場面が数多くあり、逆に言うと日常会話の中でこの思考法を常にトレーニングする機会があります。「他の事業部がこれをやっていて、うちだけやっていない」と言われることがありますが、そういう場面をチャンスと捉え、思考をトレーニングしメンバーと共に取り組むことができます。来場者や聴講者の分析など、さまざまな場面でこの思考法を活用できるでしょう。 課題の真因は? セールスが伸び悩んでいる状況はよくありますが、イシュー特定のためのマップをピラミッドストラクチャーで作ってみると良いでしょう。例えば、セールスが伸び悩んでいる際にどこに課題があるかを掘り下げるハードルを下げたいものです。具体的には、アポ数か?リード数か?契約率か?契約単価か?というように、どの要素が真因かを特定したい時に、自然とイシューを検証する頭に切り替えるための土台があると便利です。

データ・アナリティクス入門

視点が変わるデータ再発見のヒント

代表値は何を示す? データ分析においては、代表値や標準偏差といった基本指標を正しく理解し活用することが大変重要です。代表値には単純平均、加重平均、幾何平均、中央値などがあり、分析の目的に合わせた使い分けによって、より正確に傾向を読み取ることが可能となります。なお、実際の業務では最頻値を確認する場面もあるため、必要に応じて取り入れることが望ましいです。 集約手法の選び方は? また、データの集約方法にはさまざまな手法が存在し、誤った方法を用いると解釈や意思決定にズレが生じる可能性があります。そのため、常に目的に合ったアプローチを意識し、適切な手法を選択することが重要です。さらに、データのビジュアル化では、表現方法を工夫することで数字だけでは気づきにくい傾向を視覚的に捉えることができるため、状況に応じた最適な手法の選択が求められます。 ダッシュボードはどう使う? 施策の効果検証や日々の数値を確認するためのダッシュボードの作成・管理は、私の業務において大変重要な役割を担っています。これまでも代表値の使い分けやデータのビジュアル化について意識してきましたが、今回の学習を通じて基礎部分を再確認することができ、より適切な方法を用いる必要性を実感しました。特に、ダッシュボードは自分だけでなくチームのメンバーも活用するため、見せ方や解釈しやすさに細心の注意を払っています。 新たな平均法は? これまであまり使用してこなかった加重平均や幾何平均についても、現在扱っているデータに適用できる場面を意識的に探していきたいと考えています。既存のデータを例に、新たな視点での分析に取り組むことで、今まで見逃していた傾向やパターンを見出せる可能性があるため、さまざまな集約方法を試し、状況に合わせた最適な手法を選択できるよう努力したいと思います。 グラフ表現の意味は? ビジュアル化に関しては、単にグラフを選ぶのではなく、なぜその形式が適切なのかという明確な意図を持って活用することが大切です。さらに、同じ種類のグラフであっても、表示する項目数や内容によって可読性や伝達力が大きく変化するため、見せ方の工夫や調整にも十分な注意を払っています。

戦略思考入門

戦略思考で未来を切り拓く

戦略の秘密は? Week5では、戦略は個別の打ち手ではなく、その背後にある仕組みやメカニズムを理解して活用することが重要だと学びました。規模の経済や範囲の経済、ネットワーク効果といった事業経済性が戦略の根拠となる中、TF社のケースからは「調達量を増やせばコストが下がる」という単純な発想だけでは不十分で、需要や販売体制を含む全体設計が不可欠であると実感しました。また、OODAの考え方に基づいた仮説の立案、実行、検証のプロセスを通じて、数値的な裏付けとともに戦略が磨かれていくことを学びました。 戦略現場で何が重要? 一方、総合演習で取り組んだオアシスタクシーでは、戦略の本質が「やることとやらないことを決めること」にあると再確認しました。中古車販売においては、既存のバリューチェーンとのシナジーが期待できる一方、配車アプリの導入では礼儀正しさといった強みを損なわない工夫が求められました。ここでは、SWOTや3Cといったフレームワークを用いることで、事実を顧客目線の価値に翻訳する力が試され、売上や利益の概算作業を通して、意思決定に具体性と現実味が加わることが実感できました。 成功の要因は? 総じて、Week5で学んだ「なぜ効くのかを説明するメカニズムの理解」と、オアシスタクシーで実践した「顧客価値に翻訳して意思決定に落とし込む作業」が結びつき、戦略的思考が自分の中に実装されつつあるという手応えを得ることができました。 学びをどう活かす? 今回の学びを仕事に展開する際には、特に人事制度改定の局面で戦略思考とOODAループの有効性を強く感じています。会社の提案をそのまま受け入れるのではなく、多角的に情報を収集し、組織としての方向性を決定、そして意思決定を経た上で具体的なアクションに結びつけるというプロセスは、戦略的思考とOODAループが融合した実践そのものでした。 共有の意義はどう? 今後は、こうした気づきや実践を自分だけに留めず、同僚と共有する勉強会を企画したいと考えています。戦略思考やOODAループを日常業務に照らし合わせて議論することで、個人だけでなく、チームや組織全体の戦略的判断力の向上が期待できると感じています。

データ・アナリティクス入門

検証と比較で広がる学び

分析の目的は何? 分析の本質は比較にあると実感しています。何のために分析を行うのか、もう一度立ち返り、プロセス、視点、アプローチを意識することが大切です。複数の仮説を立て、様々な切り口から問題にアプローチすることで、見落としがちな問題点も網羅することができると感じます。 データ分布はどうなって? 全体像を把握するには代表値の比較が有効ですが、同時にデータの分布がどのようになっているかもしっかりと確認する必要があります。抜け漏れがないか、条件反射に頼らずに注意深くチェックすることが肝心です。また、標準偏差の変動は、株のボラリティに似た感覚で捉えています。 検証の手順は? 仮説は何度も繰り返して検証すべきで、すぐに答えを出さず、切り口に抜け漏れがないかを再点検することが重要です。問題点を明確にするためにはデータを見える化することが効果的で、これによって次のアクションやステップを取りやすくなります。データの判断目的やその見せ方にも気を配る必要があると感じます。 打ち手の成果は? 特に、ある動画で打ち手の費用対効果について触れられていたことが印象的でした。これまで「どの打ち手を優先するか」が重要だとは考えていましたが、実際にその打ち手を実施した際のリターンまで考えるという視点は、私自身の経験上、一度も考えたことがありませんでした。ファイナンスの考え方であり、その入り口ともなる新たな発見に、深く感謝しています。 時間の使い方は? また、他の社員より明らかに時間を要している業務があると感じています。正直なところ、その業務が自分に向いていなかったり心理的に好ましくなかったために、時間がかかると言い訳をしていた自分がいました。しかし、他者との比較を通して、行動前の準備段階で何か問題があるのか、結論から逆算するなど、対策案の仮説やシミュレーションを実際に試している最中です。 改善策はどうする? 現状をしっかりと把握し、問題点を見つけるとともに、どのような状態にすべきかを工程を逆算しながら検証しています。苦手な業務の改善につなげるため、うまくいかなかった場合はさらなる仮説を立て、柔軟に対応していくつもりです。

クリティカルシンキング入門

イシューの本質を見抜き、問題解決に挑む

問題解決の問いは何か? 戦略策定ケースを通じて、どのような問いを立てるべきかや、打ち手をどう打つかという貴重な経験を得ることができました。特に学びになったのは、まず最初に問いを立てることの重要性です。業績が伸びないといった大きな問題を解決する際には、問題の構成要素(単価、来店客数、店舗数など)の整理、いわゆる構造化と、自社の現状を把握することが必須です。その中で打てる打ち手を、分解した課題ごとに考えていくことや、状況によってイシューが変化することも学びました。 クライアント分析の着眼点 クライアントの状況を分析し、「何が課題なのか」を発見した上で打ち手を考案していく場面では、必ずイシューを押さえた上で打ち手を考案するように心がけます。また、自分自身もクライアントの就業環境に関するプロジェクトや幅広い年代の活躍を推進するプロジェクトに参加しているため、そこでの行動にも今回の知識を活用していきたいです。 会議でのファシリテーション術 会議のファシリテーションをする際もイシューの設定や、イシューを常に押さえていることが重要だと感じました。「このイシューで合っているか」を仲間と検証しつつ、意見や会話の方向性がイシューとずれている場合は修正するように心がけます。 情報収集の重要性とは? 思考を始める際には、「イシューは何か」をまず考える癖をつけます。そのイシューが本当に適切かどうかの精度を高めるため、チームで情報共有しフィードバックをもらいながら仕事を進めることも重要です。適切なイシューの設定及び打ち手を特定するには、マーケット全体や自社の状況など多様な情報を持っている必要があると感じたので、これらの情報を積極的に収集する癖をつけること、「この情報がないと適切な問い設定ができない」という視点を持って問題解決に臨むことを意識しています。 打ち手を遂行する際の心得 実際に決定した打ち手を打つ際、行動の中で方向性が見えなくなることもあるでしょう。その場合、「このイシューに基づき、こういう効果を期待して行動している」という点を意識し直し、最後まで打ち手をやり遂げることが大切だと感じました。

データ・アナリティクス入門

結果から逆算!あなたの成長戦略

問題解決はどう進む? 問題解決の方法として、「問題をステップに分け、結果(アウトカム)から逆算して分析する」アプローチは、限られた時間内で根本原因を明確にし、的確な打ち手を導くために非常に再現性の高い手法です。まず、期待する成果と実績値との差分を定量的に示すことで、組織内で認識を統一し、議論を「ズレの大きさ」に集中させます。次に、売上や費用などの成果指標を構成要素ごとにブレークダウンし、測定可能なKPIに紐づけることで、どの要因がどれだけの影響を及ぼしているかを明確にします。 分析はどこから始まる? 続いて、結果側から検証する「バックキャスティング」の手法を用い、大きく乖離している指標から原因を順次掘り下げていきます。得られた要因に対し、具体的な仮説設定とデータによる検証を行い、優先度の低い仮説は省くことでリソースの無駄を防ぎます。最終的には、検証済みの根本要因ごとに、効果と実行容易性を考慮したマトリクス評価に基づき、短期および中長期の施策を整理してアクションプランに落とし込むことで、関係者の合意形成と継続的な改善につなげることが可能です。 損益分析で何が分かる? また、事業別の損益実績表をもとにした問題解決にも、この「結果から逆算し要素を分解する」思考法は非常に有効でした。各事業の利益ギャップを数値で可視化し、売上要因や費用要因をツリー化して寄与度を算出することで、インパクトの大きい項目を即座に特定することができました。さらに、事業横断の共通課題と個別事業の固有課題を切り分け、優先順位を明確にした改善策を示すことで、部署間で共通のフレームで議論ができ、PDCAサイクルのスピードも向上しました。 改善策はどう組み立てる? 今後は、四半期ごとに提供される事業別の詳細データを活用し、売上、費用、各KPIを要素分解することで目標との差分を定量化し、根本原因の特定を進めます。その上で、次の四半期において改善効果が大きい施策(価格見直し、顧客セグメント別プロモーション、コスト構造改革など)を優先順位付けし、スケジュールと責任者を明確にしたアクションプランを提案していきたいと考えています。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

戦略思考入門

顧客視点で磨く、新たな価値提案への道

学び直す顧客価値と持続可能性 今週の学習では、「顧客価値」と「持続可能性」の重要性について再認識しました。特に、私はこれまで希少性や付加価値に注目してアイデアを考えていましたが、「顧客にとって本当に価値があるのか」という視点が欠けていることに気づきました。さらに、顧客視点で競合を特定するのは非常に難しい課題だと感じました。従来の市場だけでなく、デジタルトランスフォーメーション(DX)の進展により、全く異なる分野からの代替品が競合となる可能性もあります。このような環境の変化を捉えるためには、広範な市場にアンテナを張り巡らせ、常に最新の動向を把握することが必要だと学びました。この気づきを活かし、今後は顧客視点を意識した仮説検証を重ね、具体的な価値提案を磨いていきたいと思います。 SI業界における持続可能性の課題は? SI業界における「持続可能性」の重要性も改めて考えさせられました。特に、技術の進歩により、かつては差別化の要因となっていた技術やサービスが他社にも容易に模倣される現状に直面しています。この課題に対処するには、最新の技術を追い続けると同時に、既存の強みを活かした独自の価値提案を作り出す必要があると感じました。また、VRIO分析は非常に有用であり、まずは自社について実施してみたところ、組織の観点が弱いという課題を認識しました。今後はチームメンバーとともにVRIO分析を実施し、他の視点を取り入れることで新たな強みや未認識の課題を発見したいと考えています。 新技術導入のための戦略は? 自社のサービス開発の場面では、新技術を導入する際、その技術がただの流行ではなく、顧客にとって長期的な価値を生み出す持続可能な競争優位性を持っているかどうか、導入前にプロセスを強化したいと思います。また、新技術分野やDX活用事例など、日々の情報収集の重要性を再認識し、セミナーへの定期的な参加や業界レポートの読み込みを今後も心がけていきたいです。競合他社との差別化ポイントを明確にする取り組みを進め、VRIO分析で得られた洞察をもとに自社の競争優位性を高めるための改善策を検討していきます。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

「本 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right