データ・アナリティクス入門

仮説で切り拓く思考と成長の道

仮説はどう捉える? 仮説は論点に対する仮の答えであり、そこから検証や分析を進める出発点といえます。仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、前者は最終的な結論の方向性を先に立て、そこから逆算して必要な情報を集めて検証を進めるものです。一方、後者は起きている問題に対して「なぜそうなっているのか」「どうすれば改善できるか」を探るプロセスであり、What、Where、Why、Howといった問題解決の手法を意識して仮説を立てます。 仮説はどう整理? これまでは仮説を一括りで捉えていましたが、今後はどちらのタイプの仮説に取り組んでいるのかを明確に意識して使い分けたいと感じています。また、複数の仮説を立てることで決め打ちを避け、柔軟な視点を保つことができます。加えて、仮説同士の網羅性を意識し、カテゴリやプロセスといった異なる切り口からの検討は、より構造的なアプローチにつながります。こうした取り組みが、課題設定力の向上にも寄与すると考えています。 どんな経験が役立つ? これまでの業務経験では、「結論の仮説」と「問題解決の仮説」の両方に取り組む機会がありました。特に施策の立案など、結論を先に想定する場面ではフレームや構造を活用し、全体像を俯瞰したうえで結論から逆算して仮説を立てることが効果的だと感じています。一方、日々の業務でデータを確認し、問題を発見・提示する機会が増える中、What/Where/Why/Howのプロセスを意識した仮説立案が、原因特定から改善策の検討までの一連の流れを円滑に進める助けとなっています。 仮説の質はどう上がる? また、仮説の質を高めるためには、網羅性を意識しながらさまざまな切り口で検討する姿勢が重要です。この取り組みを通じて、本質的な課題設定ができ、より実効性のある打ち手へとつなげることができると実感しています。 学習の効果は何? 今回の学習を通して、「結論の仮説」と「問題解決の仮説」という2種類の仮説が存在することを再認識しました。振り返ると、私は「こうすればうまくいく」という結論の仮説に対してやや苦手意識を持っていたと気づきました。 今後の改善はどう? そこで今後は、まずフレームワークを活用して構造的に考えることに努めます。要素分解を通じて仮説を立てやすくし、思考に型を取り入れることで苦手な結論型の仮説も導き出しやすくする狙いです。また、間違ってもよいという前提で自分なりの仮説を積極的に立てることで、完璧を求めず「とりあえずの仮置き」を実践し、言い切る練習を重ねつつ検証を前提とした思考に慣れていきます。さらに、学んだ知識をそのまま受け入れるのではなく、自身の業務や経験に照らして問い直し、アウトプットや振り返りを通じて知識を深め、実際に使える形に育てる努力を続ける所存です。

リーダーシップ・キャリアビジョン入門

自分もやってみたい!挑戦するリーダーの秘訣

仕事の任せ方はどう? 仕事を部下やメンバーに仕事を任せるかどうかは、まずその業務内容が他部署との調整や政治的な配慮、あるいはミスが許されない性質でないかを十分に吟味する必要があります。 目標共有はどう? 部下やメンバーに任せる場合は、目標設定のプロセスに本人が参加し、自分の仕事だと実感できるようにすることが大切です。本人からの意見や提案を丁寧に聞き、その背景を深く理解することに努め、目標の具体的なイメージと意義を明確に伝えることで、実際に業務に取り組むメンバーが納得し共感できるよう、十分な意思疎通が求められます。また、目標の定量的な尺度を明確にすることで、達成度を具体的に把握できるようにします。 支援タイミングの見極めは? メンバーの意欲や問題意識、能力や経験を踏まえ、少し背伸びをすれば届く範囲の目標設定を心がけるとともに、適切な支援を適切なタイミングで行う準備を怠らないことが重要です。リーダー自身も、その支援に充てるための時間的・精神的な余裕を常に持つ必要があります。 リーダー評価はどう? 各プロジェクトのリーダー選定においては、候補者の経験、業務能力、意欲、問題意識、メンバーとのコミュニケーション能力、そして組織全体の目標に対するコミットメントを評価します。リーダー自らが目標設定に参加し、具体的かつ定量可能な目標を策定することで、本人の主張を尊重しながらも、その背景を十分に検証する姿勢が求められます。プロジェクト開始後も、定期的に支援の必要性を評価し、タイミングを逸することなくサポートを提供する体制を整えます。 病院目標は具体的? 病院内での行動計画においては、各診療科のリーダーと面談を行い、各診療科で具体的かつ定量可能な目標を設定します。病院全体の目標を踏まえた上で、リーダー自らが目標を策定し、その根拠を明確に示すことが求められます。診療科のメンバーの構成や能力を考慮し、目標がストレッチゾーンにあるかどうかを評価・検証し、どのような場面で支援が必要になるかを事前に申し出てもらうとともに、経過中にも適宜支援要請を受けられる体制を整えます。 部門横断はどう進む? また、部門横断的なプロジェクトを立ち上げる際には、候補者の経験、業務能力、意欲、問題意識、そしてコミュニケーション能力を評価し、職種にとらわれず適任のリーダーを選定します。特に医師がリーダーとなる場合は、時間的余裕や問題意識、コミュニケーション能力の見極めが重要となります。リーダー自らが主導して目標を策定し、組織全体でストレッチゾーンの目標設定を心がける環境を構築します。 命令管理の意義は? ただし、場合によっては命令管理型で進めるべきプロジェクトも存在することを常に認識し、その必要性を組織全体に明確に示すことも忘れてはなりません。

戦略思考入門

規模の経済性を超えて、真の競争力を手に入れる方法

戦略的行動をどう実現する? 戦略的な行動をとるためには、古くから存在しビジネスの定石とされる様々な法則やフレームワークを知り、それらの原理や前提条件、例外パターンを含めた本質をきちんと理解し、適切に用いることが必須であるということを学びました。 ビジネスの定石を再確認 WEEK5で取り上げられた「事業経済性」というメカニズムを例に、自らを振り返ると、規模の経済性がそもそも効かない場合や、効くとしても非常に限定的であることに気づきました。そのため、ターゲットを絞りサービスの価値を高めることでネットワークの経済性を活かし、そこで浮いた経営資源を集中投下して経験曲線を活かす。このように、範囲の経済性へつなげることでコスト低減が実現できそうだと感じました。しかし、これまで私はビジネスの定石を「感覚的」に理解していただけだったことに気づきました。 中期経営計画の重要性 変化の激しい時代と業界において、中期経営計画を立てる意味と重要性を再認識しています。次期中期事業計画の策定に向けて、ビジネスの定石を本質的に理解・整理し直し、一年近くの時間を有効に活用したいと思います。 視座と視野を意識した仮説思考 周囲の協力を得ながら、「高い視座と広い視野」「一貫性と整合性」を意識しつつ、不確実な情報の中でもハイサイクルで仮説検証を行う仮説思考でビジネスの定石を適用します。また、実際に適用した結果について関係者と共有し、複数の視点を基に明確な判断基準を持って投資対効果を意識し、比較検討・取捨選択を行っていきます。 事業計画策定の精査ポイント 事業計画の策定にあたり、次のポイントを精査します: - 目指すべきゴールは何か - 現経営資源に何があるのか - 省エネはどこまで追求するのか - ゴールに到達するために「やるべきこと」「やらないこと」は何か - ターゲット顧客は誰か - 自社はターゲット顧客にどのような価値を提供するか - それは本当に顧客が求めているものか - 独自性(強み、差別化ポイント)は何か - 独自性で本当に差別化できているか - 独自性は実現可能か、長期的に競争優位性を持続可能か - 事業経済性で効くものは何か、なぜ効くのか - 他社事例で適用できるものはないか 定石を駆使した事業計画 今回の講座を通じて、3C分析、SWOT分析、バリューチェーン分析、PEST分析、5Forces分析、ポーターの基本戦略、シナリオ・プランニング、VRIO分析、ジョン・コッターの8段階のプロセス、事業経済性など、10個以上の定石を学びました。事業計画を策定するにあたっては、これらの定石を意識しながら一つずつ理解し直し、他社事例を集めて研究しながら適用を進めていきたいと思います。

データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

データ・アナリティクス入門

問題解決スキルでデジタル広告を最適化

原因分析の重要性を知る 問題解決ステップにおける原因分析(Why)、Howの立て方について学びました。 原因を探るためのポイントは次の二つです。一つ目は、結果にいたるまでのプロセスを分解し、どのプロセスに問題があるか特定すること。二つ目は、解決策を決め打ちにせず、複数の選択肢を洗い出し、それを重みづけして評価・選択することです。 総合演習で何を学ぶ? 総合演習では、問題解決プロセス全体を経験しました。この過程を通じて、「問題が発生すると、解決策から考えてしまう」「仮説めいた持論を展開する」「それらしいデータに飛びつく」という思考のクセを極力排除し、問題解決ステップに沿って検討を進める方法を学びました。 実務での学びの応用は? 出版デジタルメディアにおけるタイアップ広告販売の仕事においても、この学びを活かせる場面がいくつかあります。 まず、タイアップ広告の進行中の検証や効果測定です。例えば、PVや再生数などの指標が当初の予測よりも悪い場合、従来はコンテンツの内容にのみ着目していましたが、今後はプロセスに分解することで、原因箇所を判断できるようになります。 次に、ABテストです。記事コンテンツは校了後に修正しないのが基本ですが、タイトルやサムネイル画像などの要素はテスト形式にすることができるかもしれません。また、SNSでUPするコンテンツでもテストが可能かもしれないと感じました。 成長戦略における問題解決 また、自社メディアの成長戦略策定においても、他部署と来期の戦略を立てている最中で、問題解決ステップを基にした議論がなく、Howばかりで決め打ちの議論になりがちです。そのため、効果検証がしづらい状況でした。そこで、自分が問題解決ステップのWhat、Where、Whyを整理し、メンバーに提案してみようと思います。納得してもらえるかはわかりませんが、WhyからHowの複数の選択肢を全員で洗い出してみたいです。 次に取るべき具体的アクションは? 具体的なアクションとしては、以下の内容を計画しています。 まず、途中検証がすぐにできるよう、プロセス分解を先に作成します。また、外部サポート企業にプロセス分解を依頼する予定です。 次に、サイトとSNSでABテストにかけると効果的な項目を洗い出し、社内に提案します。これについても、どの項目を抑えるとサイト成長の観点で効果的か外部サポート企業に確認します。 最後に、自社メディアの成長戦略策定に向けて、問題解決ステップに沿って自社サイトを分析しておくことです。これには、今週予定されているミーティングに向けてGA4を可能な限り分析することも含まれます。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

クリティカルシンキング入門

データ分析で知る深掘りの楽しさ

何を学んだ? 今回特に学んだことは以下の3点です。 全体定義はなぜ? まず、問題に取り掛かる際は全体を定義することが重要です。いきなり分解や分析に入るのではなく、どのような回答となりそうかを想像し、仮説を立てることから始めます。その後、その仮説を検証するための分析方法を実施します。 MECEって何? 次に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識することです。データを分析する際、漏れなくダブりがないかをチェックします。MECEが守られていない場合、分析結果が正しく事象を表していないことになり、本質を理解するためにこの考え方は重要です。 疑問で深掘りする? 最後に、結果が出ても「なぜ?本当に?」と繰り返すことです。分析結果が出た際に、それが正しく事象を表せているのか、なぜそのような結果になるのかを2~3回と深掘りして追求します。この過程で、異なる切り口での分析や、データ自体の見直しを行うことで、深い理解につながり、正しい答えにたどり着けるものと考えます。 現場で生かせる? 私は他部署で発生した事象について報告する業務が多いため、そこで学びを活用したいと思っています。たとえば、事業会社の売上実績を自部署内の会議で報告する際や、サプライチェーンの原材料調達コストの分析、新規プロジェクト立ち上げ時の計画立案などです。それぞれの場面で、様々な切り口で考え、MECEに基づいた分析を行い、結果を深掘るといったサイクルが非常に有効であると考えています。 データ報告の秘訣? 具体的な業務の中で、事業会社の毎月の売上実績を自部署内で共有する場面があります。ここでは、以下のように進めています: 定義の要点は? まず全体を定義します。事業会社から提供されるデータをもとに、いきなり売上や利益、単価の推移などを見るのではなく、何を部署内で共有するべきか、ポイントは何かを意識して仮説を立ててから分析に入ります。 分析は整ってる? 次に、MECEを意識します。その月の重点事項を決めたら、売上や利益、エリアや商品といった切り口で漏れなくダブりのない分析を進め、重点事項が正しいかどうか検証します。 結果の真意は? 最後に、結果が出ても「なぜ?本当に?」と繰り返します。もし仮説通りの検証結果が得られた場合でも、それが本当か確認します。異なる切り口からの確認も行い、事業会社から提供されたデータの数値を元に読み解くことを続けていきます。

デザイン思考入門

デザイン思考で本質を見つめる

デザイン思考の目的は? デザイン思考とは、人間中心設計のアプローチを体系化し、どのようなステップを踏んで実践していくかを示すプロセスです。まず、ユーザーの行動や感情を観察し、実際に体験するなどして、彼らが抱える課題やニーズに共感し、本質的な問題を明らかにすることが重要です。その上で、数ある課題の中から、イノベーションに結びつく本質的な問題を見出すことがポイントとなります。 なぜ解決策が重要? また、解決策のためには、アイディアを幅広く発散した後、最適なものを選別、具体化し、ユーザーからのフィードバックを受けながら改善を重ねるプロセスが求められます。こうした試行錯誤や開発者とユーザーとのインタラクションにより、単なる技術やプロダクトアウトの発想ではなく、顧客体験から新しいイノベーションを創出することが可能となります。 調査の本質は何? 私が現在関わっている調査研究業務の支援では、直近で手がける調査企画において、本質的な課題が何かを再確認することが大切だと感じています。関係者へのヒアリングや検証方法の検討を通じ、解決策がどのように次の施策へと反映されるのかを、常に意識しながら作業を進めています。 議論はどこで迷う? 講義を受けた後の振り返りでは、現場で本質的な課題について合意を形成することが難しく、「とりあえず手がけられる解決策」へと流れてしまうことが多いと実感しました。誰に向けた施策を,どのタイムラインで求めるのかによってゴールが大きく変わるため、解決すべき対象を明確にし、本質を見失わないように議論を深めていく難しさを感じています。 行動促進の鍵は? 直近では、勤務している大学の研究室で実施しているプロジェクトに関連し、ある行為を習慣化してもらうための要因や、心情的なプラス効果がどう特定の行動促進につながるかを、デザイン思考の視点で分析することを模索しています。調査企画を進めるにあたり、仮説、調査設計、調査票設計の各段階で、本質的な課題がしっかりと捉えられているか再度検討したいと思います。 知識整理の実践は? さらに、デザイン思考について他書籍や学んだ内容を資料や文章としてアウトプットしながら、知識を整理・定着させたいと考えています。将来的には、医療現場でのインタビューや現場調査の際に、広く不満やニーズを収集し、そこから本質的な課題や心理的なインパクト、行動への制約を理解するためのプロセスにデザイン思考の要素を取り入れることが目標です。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

「本 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right