データ・アナリティクス入門

平均だけじゃ見えないデータの真実

平均以外の指標は? 単純平均は外れ値の影響を受けやすいため、中央値やデータのばらつきを確認する重要性を理解しました。また、ヒストグラムや標準偏差についてはこれまで十分に活用できず苦手意識があったものの、演習を通じて具体的な活用イメージを持つことができました。加えて、加重平均や幾何平均が、データの重要度や変化率、成長率の評価に有効である点も理解できました。 分析方法はどう変わる? 課題分析においては、単に平均値から仮説を立てるだけでなく、データのばらつきも併せて確認するプロセスを取り入れるようにしています。さらに、セミナーの集客状況や参加者の満足度を評価する際、平均値に加えて中央値をしっかりとチェックするよう努めています。今後は、加重平均や幾何平均が活用できるシーンについても積極的に検討していく予定です。

戦略思考入門

顧客を魅了する差別化の秘訣

どうして差別化が必要? 差別化とは、単に他社と違うだけでなく、顧客に選ばれるために、顧客、競合、自社を徹底的に理解することだと感じました。特に、ターゲットとなる顧客が誰であるか、またその顧客にどのような価値を提供できるかを正確に捉えることが重要です。加えて、実現可能性、持続可能性、模倣困難性なども念頭に置いた施策を検討する必要があると理解しました。 顧客視点はどう活かす? また、昨年度末に自社の事業方向性を検討する機会がありましたが、その際には自社自身に焦点を当てすぎた結果、顧客視点が希薄になっていたと反省しています。今後はまず「顧客にとっての価値は何か」を追求し、その上で、自社の強みや弱み、保有する経営資源を整理し、課題を明確にすることで、実現可能かつ持続可能な差別化を実現していきたいと考えています。

データ・アナリティクス入門

数字が語る成長ストーリー

どの指標で問題解決? 顧客の行動をクリック率やコンバージョン率などの定量的指標で捉えることで、どのステップに主な問題があるかを把握できる点が非常に参考になりました。このアプローチにより、各プロセスのボトルネックを明確にし、改善点を正確に捉えることが可能となります。 点数化と離脱はどう? また、各項目を点数化して意思決定を行う方法は大変勉強になりました。各指標にはそれぞれ長所と短所があるものの、複合的に判断することで、優先事項の認識を合わせ、定量的な基準を共有できると感じました。さらに、顧客がどのステップで離脱しているのかをファネルの視点から整理する手法は、成果に結び付けるための具体的なアクションプランを立てる上で非常に有用であり、今後の分析や社内での課題解決の手法として周知したいと考えています。

クリティカルシンキング入門

問いの力で広がる学びの扉

「問い」をどう捉える? 「問い」にフォーカスしている点がとても印象に残りました。この「問い」を生み出すためには、物事を多角的に捉える視点が必要であると感じます。たとえば、WEEK1で学んだ内容が実際に活かされるという点から、さまざまな見方を取り入れる重要性と、それに伴う言語化のスキルも求められていると実感しました。 資料作りはどう進める? 今後、提案資料や報告資料を作成する際には、今回学んだ視点の多様性と言語化の技術を活かしたいと考えています。客観的で説得力のある資料作成には、顧客の多様な立場(経営層や現場担当者など)だけでなく、自社内のさまざまな視点も取り入れることが必要です。また、他者が作成した資料をチェックする際にも、これらの点を意識し、課題解決に役立つ情報提供ができるよう努めたいと思います。

データ・アナリティクス入門

未知の平均値に挑戦

指標の基礎はどう? これまで平均値と中央値を用いた分析は行っていましたが、加重平均、幾何平均、標準偏差といった他の指標については十分に理解していませんでした。今回、これらの指標の基礎を学ぶ中で、その重要性を実感しましたが、実際に活用するとなるとまだ課題が多いと感じています。今後は、これらの考え方をさらに深め、実践的な使い方を模索していきたいと思います。特に、経営指標として必要な幾何平均については、実データを用いて分析に挑戦する予定です。 どんな分析を試す? 自社製品の原価と営利に関する調査・分析の中で、今回学んだ幾何平均を早速活用し、過去のデータを基に営利分析を実施します。また、部門ごとの工数分析では、業務に費やす時間だけでなく、関わる人数も考慮に入れて評価し、より客観的な分析を目指します。

クリティカルシンキング入門

イシュー活用で未来を創る

イシューはどう見極める? 問題や課題を解決するには、まずイシューを特定することが大切だと学びました。イシューは、見る角度や考え方によって様々な切り口で設定できるため、目の前にある問題を多角的に分析し、考えうるイシューを洗い出すことが重要です。その上で、状況や環境、優先事項を踏まえ、どのイシューに注力すべきかを見極める必要があると実感しました。 直感に頼らない方法? また、チームの管理職として日々の業務で課題に直面する中、これまでは自身の経験や直感に頼った対応が多く、時としてその効果に限界があることを感じていました。今回の学びを活かし、今後はクリティカルシンキングの手法を用いて、多角的に要因を分析・洗い出し、上司や部下と議論しながら、最も効果的な解決策を選定して実践していきたいと考えています。

デザイン思考入門

実務に効く!学びの発見術

経営戦略って何かな? 今回の講義では、普段気付かなかった経営の視点や戦略の考え方を学ぶことができ、とても充実した時間を過ごすことができました。講義内容が実践的で、自分自身の業務や考え方にすぐに取り入れられる点が特に印象的でした。 教材はどのように活かす? また、受講中に提供される資料や課題を通じて、問題解決のプロセスを具体的かつ体系的に理解することができました。講師の話し方や解説も分かりやすく、内容が自然に頭に入ってくる工夫が随所に感じられました。 学びはキャリアにどう? 個々の事例や演習を通じて、自らの業務への応用可能性を実感できたことは、今後のキャリア形成に大いに役立つと確信しています。今後もこうした学びの場を通じて、自己成長を続けていきたいと感じました。

データ・アナリティクス入門

焦らずじっくり、物語で解決

どの結果を目指す? 分析に取り組む際、すぐに手をつけがちですが、まずは結果をイメージし、どのようなストーリーで進めるかを考えることが非常に大切だと感じています。What、Where、Why、Howの各視点を意識することで、問題解決へのアプローチが明確になると思います。 焦らず目的は何? また、分析業務の増加に伴い、結果を急ぐあまり焦ることがありました。しかし、焦るのではなく、目的を明確にし、ストーリー構築に十分な時間をかけるべきだという考えに至りました。これまでは十分な計画を立てずに作業を進めた結果、自分の苦手な部分が露呈していたと実感しています。 広い視野で挑む? 今後は、課題解決に向けた仮説の設定やストーリーの構築を、より広い視野で取り組んでいきたいと考えています。

クリティカルシンキング入門

学びが現場を変えるヒント

データ傾向はどう把握? 事実データを可視化し、その傾向を的確に把握して分析を進めることで、実務において「イシュー」を正しく設定する手法が非常に有効であると感じました。総合演習といった実践的な例を通じて学びを深めた結果、今回の経験が今後の自分の成長につながるという具体的なイメージを持つことができました。 根拠提案はどう実現? また、仕事においては、対顧客向けのプレゼンテーション、プロジェクトへの参画後の要件定義、さらにはプロジェクト管理における課題管理やQA管理など、さまざまなシーンで今回の学びを活用できると感じています。特に、顧客が抱える課題に対して正しい問題設定がされていないケースが多いことから、今回の研修を通じて根拠ある提案が実現できるようになると期待しています。

クリティカルシンキング入門

論点で切り拓く未来への挑戦

講義の反省点は? 講義全体を振り返る中で、自己の意識に偏りがあったことを改めて実感しました。今後は、常に論点(イシュー)を意識し問い続けるとともに、ピラミッドストラクチャーやロジックツリーを活用し、MECEの原則に基づいて課題や問題を漏れなく、かつ重複せず整理しながら論理的に解決することを心がけたいと思います。 日常業務の課題は? また、日常業務で直面する問題や課題については、経験や勘に頼るのではなく、データと事実に基づいた論理的な思考を徹底する必要があると感じました。そのため、常に論点を念頭に置き、ピラミッドストラクチャーやロジックツリーを用いて体系的に整理し、根本原因や真因にまでたどり着けたかを振り返りつつ、再発防止の仕組みを確実に運用していきたいと考えています。

クリティカルシンキング入門

反復と直感で本質を探る

振り返りはどう捉える? 今回の学びを通して、反復練習やアウトプットを行わなければ知識がすぐに薄れてしまうことを実感しました。そのため、定期的に振り返り、考えを整理し、積極的に伝えることの重要性を改めて感じました。 直感と理性の対話? また、直感や勘だけに頼らず、それを具体的な言葉にして表現することが大切だと気づきました。その裏付けが何であるかを考え、直感が本当に正しいのかを検証することは、日常生活でも有効な行動だと感じています。 自分を見つめ直す? さらに、他人の意見を参考にするだけでなく、自分自身の直感に対しても疑問を持ち、本質的な課題が何であるかを追求する姿勢を忘れずにいきたいと思います。今回学んだことを実践し、今後の行動にしっかりと活かしていきます。

データ・アナリティクス入門

仮説検証で磨く伝わる分析術

どんな学びがあった? 今回の学習を通じて、自分の不足点や修正すべき点を改めて確認することができました。 仮説検証は十分? まず、仮説を検証する過程で、データの取得や加工は行ってきたものの、否定的な視点からその仮説が正しいかどうかを十分に検証する必要があると感じました。次に、分析時には適切なフレームワークの活用が重要であると再認識しました。さらに、結論をまとめた際、相手に正しく情報を伝えるために、グラフなどの視覚資料の選び方や説明の仕方が大きく影響することも学びました。 改善に向けて何? これらの学びを生かし、今後は自己の課題や修正点に注意しながら、分析や報告の方法を工夫していくことで、上司の理解や納得を得られる報告資料を作成していきたいと考えています。

「今後 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right