データ・アナリティクス入門

仮説と検証で輝くデータ分析

グラフ選びの意義は? データの基本的な加工方法について学び、どの場面でどのグラフを用いるべきかを考える大切さを実感しました。グラフの選択を誤ると、重要なポイントに気づけなくなる可能性があるため、今後はグラフ選びのセンスをより一層磨いていきたいと思います。また、X軸やY軸の設定がグラフの印象に大きく影響することも学び、客観的な視点でデータを分析する必要性を痛感しました。 分析視点の拡大は? さらに、販売実績の分析においては、年齢、性別、購入時期などの切り口でデータを細分化し、多角的に見ることでより深い洞察が得られると感じました。データを見やすく加工することで、迅速な意思決定に繋がる効果や、説得力ある資料作成に役立つ点も納得できました。 仮説検証の基本は? 一方で、仮説を立て検証するという基本ステップが省略されがちであると感じました。手元のデータのみで課題の発見から解決策の選定まで進める傾向が見受けられるため、仮説設定と検証のプロセスにもっと注力し、多角的な分析を可能にする適切なデータ加工の重要性を再認識しました。

リーダーシップ・キャリアビジョン入門

小さな変化に気づく上司の挑戦

上司役で何を学んだ? ロールプレイングで上司役を担当した際、日常的な癖がはっきりと表れる自分に驚かされました。このような事象は実際の日常でも頻繁に起こると感じます。部下側の心情も公開された状態で取り組んだため、対策は立てやすかったものの、バイアスの影響で実際には手遅れになるケースも多いと実感しました。日常の小さな変化に気づき、各パターンを把握する重要性を改めて認識できました。また、プレイ中に別のグループから具体的なアドバイスをいただいたことも、非常に勉強になりました。 バイアスを捉えられる? バイアスをかけず、物事をフラットに捉える癖を身につけるのは容易ではありませんが、今後の課題としたいと思います。例えば、少し元気がない部下がいた場合、過去の経験から業務量に支障はなかったと判断しがちで、問題に気づかないことがあると感じています。また、所属していた部署ごとに常識が異なることを見逃しやすい点も課題です。仕事を依頼する際に、事前に細かい指示を控えがちですが、共通認識を持つための確認時間をしっかりと設けるよう努めたいと思います。

クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

クリティカルシンキング入門

小さな問いが大きく変える会議

問いとは何だろう? 今週は「問い・イシュー」を学び、これまで学んだことの総合演習を実施しました。イシューとは、今ここで答えを出すべき問いであり、長期的な課題解決のためには用いません。また、イシューを設定しないと論点がずれやすくなるため、常に意識し一貫して押さえ続けることが大切だと実感しました。 会議は何を促す? 会議では「今日のゴール」を設定し、議事録の一番上に書いて全員で共有しました。その結果、イシューや目的が何であったかを改めて意識でき、各参加者のイシューがずれることなく進められたと感じました。今後もこの方法を継続していきたいと思います。 メモはどう活かす? また、会議の議事録だけでなく、誰かに見せるためではなく自分用のメモにもこの考え方を応用したいと考えています。過去には、目的と手段が入れ替わっていると言われることがありましたが、イシューを明確に設定していなかったため、そうした指摘にピンとこなかった経験があります。今後はまず問いを立て、何がイシューなのかを念頭に置いた一貫性のある思考を心がけたいです。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

クリティカルシンキング入門

視野を広げたクリティカルシンキングの実践

偏りをどう克服する? 自分には考え方に偏りがあり、それを実践を通じて理解することができました。しかし、理解していると感じていたとしても、実際の実践では思うようにできていないことに気づきました。そのため、常に自分の解答に「なぜ」を問い続けることや、「3つの視」を活用して様々な角度から物事を見ることが重要であると学びました。 どのように技術的課題を整理する? 業務上では、技術的課題が多くの場面で生じます。その際、いつ何を解決するのか、どれが大きなリスクなのかを網羅的に把握することが求められます。また、その解決にクリティカルシンキングを用いることで、偏りのない解決策を提示し、相手にも理解しやすい形で説明できるようになります。 今後どのように理解を深める? 今後は、常に自分の解答に「なぜ」を問い続け、「3つの視」を活用して様々な角度から物事を捉えることを意識しながら、解決方法の選択を構造化して図や表で示し、相手に説明することを心掛けます。また、相手の意見を受け入れつつ、自分の考えを柔軟に客観視する姿勢を大切にします。

マーケティング入門

顧客の体験を深掘りして発見する新たな価値

課題の難しさを克服するには? 今週の課題は特に難しく感じました。商品自体のメリットを説明することはできても、そこから生まれる体験を認識し、言語化することが困難でした。特に、ある企業から得られるエンターテイメントの体験は新たな気づきでしたが、別の企業から得られる体験は比較的想像しやすかったです。 どんな体験を創り出すべき? 自社の製品はあまり競合が存在せず、その特長がすでに顧客満足に繋がっているため、これまで製品体験を深掘りすることはありませんでした。しかし、今後はより顧客の生活や人生に着目し、どのような体験を創造できるかを考えていこうと思います。 具体的なアプローチ法は? 具体的には、顧客の生活を理解するために時間をかけたいと思います。SNSやアンケート結果を通じて顧客のお困りごとを理解し、講演会に参加するなども実施していきます。また、体験を言語化できず、認知できていないという課題が見つかりました。そのため、今後は身の回りの商品やサービスからどのような体験が得られているのかを考える癖を付けていきたいと思います。

データ・アナリティクス入門

売上アップの鍵は原因分析と多様な選択肢

課題解決のプロセスとは? 課題解決の近道は、原因をプロセス分解してアプローチすること、そしてボトルネックをきちんと把握することにあると思いました。また、正解がない中できちんとした判断基準を持ち、複数の選択肢を視野に入れておくことが重要です。 売上向上のための出発点は? 売上が上がらない理由の一つとして、ABテストを行わずに出来上がった広告を動かしたことが挙げられます。時間や様々な制約があったとしても、きちんとテストを行うべきだったと再認識しました。この経験から、原因をしっかり考え、複数の選択肢をイメージする必要性を感じました。 リブランディングの展望 現在、リブランディングも視野に入れ、分析や情報の精査をしています。売上が上がらなかった理由はぼんやりと見えてきているものの、説得力には欠けている状態です。これまでの考え方(what、where、why、how)を踏まえながら、原因をプロセスを追って分析していきたいと思います。そして、一つの選択肢に固執せず、複数の選択肢を検討しながら今後の展開に活かしていきたいです。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

クリティカルシンキング入門

毎日の振り返りが未来を創る

今までの学びはどう? 今まで学んできた知識を多角的に活かす課題でした。一つ一つの学び自体は決して難しいものではありませんが、実際に身についているかというと、まだもう一歩という印象を受けました。日常的に自分の作成した資料や業務の進め方を振り返り、チェックすることが必要だと感じています。 提案と報告はどうなる? 企画の提案や上司への報告など、あらゆる場面で今回の学びを活用できるはずです。目的や課題を明確にし、相手の立場に立って考える姿勢を、日々の業務の中で当たり前にできるようになりたいと思います。また、重要なポイントはすぐに確認できる場所に貼っておき、仕事中にすぐ参照できるよう工夫したいと考えています。 知識は定着してる? 学習が終わっただけでは知識は定着しません。今後、実際に使う機会を設け、以下の方法で知識の定着に努めます。まず、重要なポイントをすぐ参照できるよう整備すること。次に、動画や資料を3日後、1週間後、1ヶ月後に復習すること。そして、可能な機会には後輩や子供に教えることで、自らの理解を深めたいと思います。

クリティカルシンキング入門

データ分析で実感した新たな視点の必要性

刻み幅の切り方はどう? データの傾向を把握するためには、「刻み幅の調整」が重要です。刻み幅によって、データの分布がどのように見えるかが変わるため、機械的な方法ではなく、どのように切ることで特徴が見えやすくなるかを仮説を立てて試みることが大切です。また、手元にある情報だけで判断すると視点が偏りがちなので、目的意識を持つデータ取得も必要です。 アンケート設計はどう進める? 今後、アンケート調査などを設計する際には、データの切り分け方を検討する際に役立てたいと思います。課題や事象の分析では、解釈の羅列ではなく、観点となる切り口を意識して情報を分解し構造化することが有効です。A for not Aの発想も活用できます。 定性情報はどう扱う? 業務においては、定性情報の示唆を分析する局面が多くあります。具体的には、プロジェクトのボトルネックの特定や、意思決定に影響を及ぼす要素の分析において役立てたいと考えています。ただし、定性情報を分解する際には、MECE的発想が必要かどうかを見極めたうえで活用することが重要となります。

データ・アナリティクス入門

未来へつなぐ分析のヒント

分析の目的は何? データ分析では、まず目的を明確にし、その目的に沿った意味のあるデータを比較することが重要です。分析結果からどのような結論が導かれ、どんな提案が可能かを考えることが、真の意味でのデータ分析だと感じました。過去の例を参考にしながらも、今回の学びで分析の意味付けがはっきりし、今後の学習に自信を持って取り組めるようになりました。 予算と現状はどう? また、次年度の予算獲得に向けて、現在の業務状況を客観的に伝える手段として、このデータ分析のスキルを活かしていきたいと考えています。各業務には固有の課題が存在するため、業務ごとに目的を明確にし、その目的に必要なデータ項目を検討することで、具体的な分析が可能になると実感しています。 指摘課題をどう見直す? さらに、すでに上司から指摘されている課題にも取り組むため、まずはメンバーと課題を共有し、目的に沿ったデータ項目の検討を進める予定です。その際には、上司とも現状や仮説について事前に共有できる場を設け、目的を明確に提示できるよう努めたいと思います。

「今後 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right