デザイン思考入門

定性分析で見えた地域の本音

地域振興の意義は? まちづくり活動の一環として、自治会の地域振興計画書作成に取り組みました。地域住民へのアンケート結果をもとに、ワークショップで各課題の重大度と緊急性を2軸に評価し、課題を整理する作業を行いました。これにより、まさに定性分析を体感したと実感しています。 定性分析の限界は? ただし、今回の取り組みは定性分析の段階であり、コーディングの考え方までは取り入れていません。そのため、今後、具体的な行動計画の策定や検討において、コーディングを導入する可能性があると感じています。 共通理解の深め方は? また、地域住民の課題感を言語化することが、参加者間の共通理解の深化に寄与し、より有意義なワークショップへとつながると考えています。学びがさらに深まった時点で、実践に移し、その成果を記録していく予定です。 学びの整理方法は? 今回の経験で実施してきた取り組みが一つのフレームワークとして整理されたことは、理解の進展に大いに役立ちました。今後は、この学びを実践に定着させるとともに、同僚や団体のメンバーにも同じフレームワークを十分に説明できるよう、さらなる理解の深化を目指します。

戦略思考入門

数字で納得!業務改革の新提案

従来方法を見直すには? 長年同じ業務に従事していると、ついつい従来のやり方に固執しがちです。しかし、限られた時間内で多くの成果を上げるためには、効率の悪い業務に割く時間を削減する必要があります。なお、やるべきことと不要なことの判断は一個人だけで決められるものではなく、客観的なデータを基に周囲に説得力をもって説明することが不可欠です。 指標はどう活かす? 例えば、ウェブサイトの運営では指標が明確なため、ページビューが少ないコンテンツに充てる時間や外注費を抑え、逆に成果の高いコンテンツには多くの時間と予算を割り当てる工夫が可能です。こうして限られたリソースを効率的に活用することで、より良い成果が見込めます。 定量化の壁を超えるには? 一方で、総務業務のように業務量が定量化されていない場合、周囲を納得させるためのデータ整理にはかなりの時間を要します。そのため、私自身はウェブサイト関連の業務については効率化を進める一方、総務業務に関しては現状維持を選択せざるを得ない状況です。 このように、合意形成に多大な時間とコストがかかるタスクをどのように効率化するかは、今後の大きな課題となります。

クリティカルシンキング入門

会議を変える!具体的課題への挑戦

グラフの理解は難しい? 「何をすべきか考える」のゲイルでは、グラフが示す内容は理解できたものの、回答例と比べると自分の課題解決力の向上が必要だと実感しました。 会議の進行は大丈夫? また、issue特定において「一貫してissueを抑え続けることが大事」との指摘がありましたが、実際に参加する会議では、論点がずれて別のissueが議論され、結果として会議時間が延長される場面が見受けられます。今後は、発表者やファシリテーターとしてこの点に一層注意し、会議の効率化を図っていきたいと考えています。 近未来の問いは? さらに、遠い将来の問いではなく、近い未来に実現可能な具体的な問いを立てることが、業務だけでなく自分の思考整理にも役立つと学びました。同時に、自分で設定した課題を他者と共有し、同じ目線で課題解決に取り組む重要性も再認識しました。 目標設定はどう? 例えば、自分の業界や部門の課題を明確に問い、組織内で共有して同じゴールを目指す業務遂行や、業務プロセス上のissueとその解決策を、事例を収集しながら具体的な期限と共に関連部門に共有する方法を実践していきたいと考えています。

クリティカルシンキング入門

正しいイシューが未来を拓く

イシューはどう見る? 今ここで答えを出すべき問い、すなわちイシューに着目する大切さを再認識しました。正しいイシューを設定するためには、まず現状を正確に理解し、問いを残し共有・意識することが必要です。ファストフード店の事例を通して、客離れの改善策を探る際に一面的な視点ではなく、幅広い視点で検証する重要性を感じました。 課題整理はどう進む? また、日常業務においては大小さまざまな課題が常に存在しており、それぞれの課題を抽出・整理し、優先順位を付けて実行、結果を分解して分析することが業務推進に欠かせないと実感しています。今回の学びを通じて、論理的なアプローチが業務の改善に直結することを実感しました。 論理で歩む未来は? さらに、Week1から5で学んだ視点の変化や分解、イシュー・結論・根拠の整理、グラフ化といった方法論を今後の業務に積極的に取り入れ、より明快で論理的な進め方を心掛けていきたいと思います。プレゼンテーションにおいても、相手を意識した論理的で分かりやすい資料作成および説明に努め、会議では不要な話題を避け、常にイシューに意識を向けながら参加していくつもりです。

データ・アナリティクス入門

仮説と試行錯誤で切り拓く未来

仮説構築はどう始める? 仮説を立てる際には、3Cや4Pといった切り口を活用し、情報を整理することで仮説ストーリーを構築しやすくなります。仮説は結論仮説と問題解決のための仮説に分かれ、検証にはデータ収集が不可欠です。その際、誰にどのように聞くかを工夫することで、仮説に沿ったデータが得られると感じました。 計画検討は何を確認? お客様の活用コミュニケーションの計画を検討する場合、これまでの施策結果の課題、どの部分で課題が生じているのか、その原因、そして施策変更による改善策について、段階的に細分化して考える必要があると認識しました。仮説の流れは「What → Where → Why → How」という順序で検討することで、論理的に整理されやすいと感じています。 検証実施はどう進む? 一方で、自分の組み立てた仮説が正しいかどうかについて、常に不安を感じることがあります。授業では、仮説に疑問があってもまずは早く検証を回すことが大切であると指導いただきました。しかし、実際にその検証を迅速に進めるためには、どのようなアプローチが最適なのか、今後も試行錯誤しながら検討していきたいと思います。

アカウンティング入門

収益構造から読み解く経営戦略

収益構造はどう影響する? 学んだ内容の中で印象的だったのは、事業活動の収益構造が企業のコンセプトに大きく影響されるという点です。自社がどのようなコンセプトで事業を展開し、収益を上げていくのかを最初に明確にしておくことが重要であると感じました。そうしなければ、場当たり的な対応になったり、顧客のニーズを捉えられない、あるいは伝わらなかったりするリスクがあるからです。さらに、PLから読み取れる収益構造を基に、企業の特徴や課題について仮説を立て、検証する方法も学びました。 部署間比較で何が見える? この知識を活かし、まずは自部署の事業収益構造と、競合他社との比較から自社の強みや弱みを分析し、課題解決につなげたいと考えています。また、月次の採算会議や各会議で、自部署の課題や対策を検討する際にも、この学びを実践的に活用しています。さらに、自部署のPL(管理会計ベース)と他部署のPLを比較することで、各部署の特徴や利益の出し方にも注目するようになりました。今後は、競合他社のPL(財務会計ベース)も確認しながら、自社に不足している活動を明らかにし、経営層へ具体的な提言を行っていきたいと思います。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

リーダーシップ・キャリアビジョン入門

押し付けない対話で成長実感

プロジェクトでの挑戦は? これから複数のプロジェクトを立ち上げる中で、エンパワメントの考え方を実践してみたいと考えています。動画で学んできた知識に加え、今回のAI演習を通じて、自分自身の不足点がより明確になりました。 押し付けに気づいた? 演習はパソコンでの作業という特性上、普段の会話以上に意識を向けましたが、それでもなお、会話が押し付けがましくなってしまい、相手の不安をうまく汲み取れなかったという結果になりました。この経験から、普段のやり取りでもつい自分の意見を強く押し付けてしまっているのだと実感しました。 成長機会はどうなる? その結果、メンバーが自ら成長する機会を失い、マネージャー自身も時間に追われる状況が生まれてしまう恐れがあります。そこで、まずは今回学んだことをプロジェクトに反映させ、実践していくことに挑戦したいと思います。 会話のバランスはどう? また、押し付けずに問いかけ中心の会話を試みると、逆に話がだらだらと続いて終着が見えなくなるという課題も浮き彫りになりました。今後はその適切なバランスを見いだせるよう、日々の業務で試行錯誤を続けていく所存です。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

クリティカルシンキング入門

論理と客観で未来を切り拓く

考えは整理された? 論理的に考えるために、まずは具体的な作業内容が明確になったと感じています。自分の考えが偏っていることを認識し、客観的に見るもう一人の自分を育てること、そして考えを可視化し項目化してMECEの視点を意識すること、さらに具体と抽象を行き来することの重要性を実感しました。 プロジェクトの計画は? ① プロジェクトを進めるにあたっては、まずゴールをしっかり設定し、その達成に向けた計画を立てる必要があると感じました。自分の意見や考えを基に、どのように進めるべきかを整理し、進捗状況に応じて調整しながら計画的に進めることが求められます。 疑いは成長の鍵? ② また、業務におけるスキル面の課題整理や行動計画の作成・実行においても、書き出すことで三つの視点やMECEの観点を整理できる点が大いに役立ちました。時間をかけて考えるより、まずは先に進めながらも、立ち止まって整理し自分の出した答えに疑いを持つことで、現状を俯瞰的に捉える訓練となりました。 今後の進め方は? 以上の学びを通して、今後も論理的な思考を大切にし、より効果的に業務を進めていきたいと考えています。

デザイン思考入門

弱点克服!チームで未来を拓く

授業内容をどう感じた? 講義のビデオを視聴し、発表を楽しませていただきました。出席され発表された皆様に感謝申し上げます。講義の最後に、自身の得意分野と不得意分野について振り返る時間があり、デザイン思考のプロセス全体を把握する中で、全てを自分一人で担う必要はなく、得意な部分はチームで補完する方法もあると改めて気づかされました。 発想と共感はどう? 営業としては、私は発想力に長けており、顧客のニーズに応じた様々な提案を考える点が得意だと感じています。しかし、共感や課題定義においてはまだ改善の余地があると感じ、顧客のニーズを十分に引き出すことが課題であると認識しました。今回のデザイン思考の学びを通して、自分の弱点を補うヒントがたくさん得られたと感じています。 面談の工夫は何がある? 今後は特に、共感や課題定義のスキルを強化していきたいと思います。顧客訪問の際、事前にヒアリング項目を整理するだけでなく、面談中にも気づきを得られるよう心構えを工夫していく所存です。また、面談後には得た情報を基に課題定義のプロセスを振り返る機会を設け、さらなるスキルアップに努めたいと考えています。

データ・アナリティクス入門

挑戦で切り拓く統計の世界

平均値の使い方は? 普段は代表値や単純平均を活用して概ねの状況把握に努めています。加重平均や中央値も業務の中で用いられている印象ですが、幾何平均や標準偏差に関しては、知識としてはあるものの実践する場面が少なく、具体的な事例を通じて使いこなす機会が今後の課題だと感じています。 ばらつきの見える化は? 特にばらつきに関しては、標準偏差の数値だけでは理解しにくいため、ビジュアル化して整理することが重要だと思います。ビジュアルで示すことで、各切り口からトレンドを読み取りやすくなり、自身だけでなく他者にも理解してもらいやすくなると感じます。 幾何平均はどう活かす? また、幾何平均については、実践での理解を深める努力が必要だと感じます。理解が進めば、標準偏差と組み合わせて顧客分析などの業務において有効な手段になると考えています。 分析に挑戦するには? まずは、苦手意識のある分析手法や未経験の手法に挑戦し、自分自身で試してみることが理解への早道だと思います。職業柄、大規模なデータに触れることもあるため、今回学んだ知識を実務にうまく活かしていきたいと考えています。
AIコーチング導線バナー

「今後 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right