クリティカルシンキング入門

問を軸に成果を掴む会議の知恵

会議の本質は何? 会議では、初めに設定した問いを見失わないことが重要です。部門内で情報を共有する際も、議論が本来の目的から逸れないように注意が必要です。ホワイトボードに議論内容を書き出し、常に目で確認できる状態にすることで、開始時に掲げた問いに対する答えが得やすくなると感じました。 打合せの反省点は? 客先との打ち合わせの際、単に要望を聞くだけでは議論が広がり、必要な事項を決めきれないことがありました。今回学んだ点を活かし、会議開始時に目指した成果を確実に得られるよう努めたいと思います。 議論の目的は何? 業務を進める上では、「何を考えるべきか」「受け手の関心は何か」を十分に考え、「考え、論じる目的」を明確にすることが大切です。まずは目的が適切かを疑い、その検討が本当に必要かどうかを立ち返りながら議論を進めるよう心掛けています。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

デザイン思考入門

疑問から生まれるデザインの力

多様な視点が見えた? 同じテーマについて多様な視点が存在することを学びました。ユーザー目線で現状の仕組みが本当に適切かどうか検証する過程で、各メンバーが異なる観点から意見を述べるのが非常に印象的でした。また、デザイン思考に関しても、参加者それぞれの想いが交わり、ディスカッションが盛り上がった点がとても興味深かったです。 現状をどう問い直す? 現状に疑問を持つことの重要性を実感しました。従来の方法や制度がただ続いている理由だけで運用されている場合、それをユーザー目線で見直し、より使いやすい形に改善する必要があります。まずは現行制度の確認と再検討を行い、実際に受けた問い合わせや相談内容を反映させながら問題定義を進めることが大切です。さらに、可能な範囲で改善策を検討し、ロジックツリーなどの手法を用いて試行錯誤を重ねるプロセスが印象に残りました。

クリティカルシンキング入門

疑問をチャンスに変えた日々

課題洗い出しはどうする? 業務課題に取り組む際は、まず課題となるイシューを漏れなく洗い出すことが基本です。各イシューは疑問形で具体的に問いかけることで、本当に解決すべき問題が明確になります。また、一面的な経験則に頼らず、多角的な視点から解決策を検討することが求められます。特に、最初に手を付けるべき課題を明確に優先順位を付けることで、効率的な対応が可能となります。 伝え方と相談対応はどう? 顧客からの相談や業務上の課題に対しては、これまで学んだ正しい日本語の使い方や伝え方、そして図や表を活用したイメージしやすいドキュメント作成の技法を積極的に活用しています。各課題を順番に処理するのではなく、優先度を意識しながら対応すること、さらに対策を立てる際には自身の経験に引きずられず、必要に応じて他者の意見も積極的に取り入れている点が大きな特徴です。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

数字が導く成長物語

平均と中央値の必要性は? 平均と中央値は必ず確認するようにしていました。普段は数字を多く扱わないため、加重平均や標準偏差を使うケースはほとんどありませんでしたが、数が多い場合にはこれらを用いることもあり、特に違和感は感じませんでした。 意見共有は効果的なの? 日頃から行っている手法ですが、最近は大規模な数値を扱う機会が少なく、現状ではあまり活用できる場面が想定できません。しかし、他者と同じ観点で意見を出し合うためには、この考え方を共有することから始めるのが効率的だと考えました。 グラフ形式を再考すべき? また、いつも同じ形式のグラフを使いがちだったため、より適切な形態を再度検討してみるのも良いと思いました。一時期はヒストグラムを多用していたものの、ここ数年は使用していなかったので、今後改めて利用してみたいと感じています。

クリティカルシンキング入門

主張と根拠で磨く思考の一歩

問いと答えで学ぶ理由は? 今週はクリティカルシンキングの振り返りを行い、WEEK1の自分の回答を再確認しました。問いと答え、すなわち主張と根拠のシンプルな構成が印象的で、問いを明確に設定し、その問いだけに集中して回答するという行為の難しさを実感しました。 お客様の課題は核心? また、商談時にはお客様からシステム構築による課題解決のご相談をいただくことが多い中で、お客様の課題が何か、本当にその課題が核心なのか、そしてその解決策が改善につながるのかを、主張と根拠をセットで検討する必要があると感じました。講義で「早く答えを導き出すには常に考え続けることが大切」という話が印象深く、思考の切り替えを意識して反復することで、そのスピード感を自分のものにしたいと思います。今後は、何かを考える際に必ず主張と根拠を意識する行動を心がけていきます。

クリティカルシンキング入門

実務で活きる!効果的な問いの立て方

初動で何を押さえる? 取り組むべき問いについて、最初の一歩からずれてしまうと、異なる論点へ進んでしまう可能性があります。したがって、組織やチーム全体で方向性を共有することが非常に重要だと感じました。イシューを特定するためには、問いを明確にし、具体的に考え、一貫して押さえ続けることが大切です。 採用手法の見直しは? 実務においては、新卒採用や中途採用の手法について検討する際、キャリアフェアの動員数を増やすことだけに固執せず、イシューがどこにあるのか、そして他に利用できるチャネルを探求していく視点が重要だと学びました。 採用効率向上の方法は? はじめに、どのような手法が考えられるのかリサーチし、それを書き出してみます。そして、ターゲット層を分析し、具体的にどのような行動が採用効率を向上させるのかを検討していきたいと思います。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

データ・アナリティクス入門

新たな角度でデータを読み解く!

データ加工の本質は? データ加工の基本的な考え方について学び、特に異なる尺度でまとめたデータの数値だけでは判断ミスが生じることがある点に気づきました。単一のデータでも複数の角度から解釈する必要があり、どの尺度で考えるかが重要だと理解しました。 セグメント平均の真相は? 従来は接触者の年齢や地域などのセグメントごとの数値を単純平均で把握していましたが、中央値や加重平均、さらには標準偏差などの視点から見ると、これまでとは異なる発見があると感じています。これにより、データのばらつきや偏りをより正確に把握できると考えています。 再検討の必要性は? これまでのデータのまとめ方が実際の状況を正しく反映しているのか、改めて考えるために、単純平均だけでなく「中央値」「加重平均」「標準偏差」を取り入れた再検討に努めたいと思います。

マーケティング入門

日常に潜む学びのヒント

シーンが需要を拓く? 自社の商品は嗜好性が高いため、もともとのターゲット以外の顧客を獲得するのは容易ではありません。しかし、例えばぬいぐるみが旅行や観劇、ライブなどのシーンで写真に収められることによって、これまで子供向けとされていた需要が大人層にも広がる可能性があります。このように、使用シーンを想起させるプロモーションの力は、定番商品の売り上げ拡大にも寄与する有効な手法であると感じました。 別層への戦略は? また、定番商品の既存顧客以外への訴求を検討する際には、どのシーンが考えられるのか改めて商品の特性を観察することが重要です。さらに、新商品についても、従来のターゲット層に加えて別の層へどのようなアプローチが可能かを再考し、二面的な展開でプロモーション戦略を構築するなど、一度自身の手法を見直す必要性を実感しました。

「検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right