マーケティング入門

体験が拓く付加価値の扉

事例で何が見える? 今回の事例を通じて、商品にまつわる体験が差別化の鍵となることを学びました。長期にわたる体験には、顧客ロイヤリティの向上、リピート購入の促進、そして顧客インサイトの獲得といったメリットがあります。一方で、顧客が飽きやすくなるリスクや新規顧客獲得の難しさというデメリットもあるため、価値を持続させる工夫が必要だと感じました。また、価格を引き上げるためには、他にはないユニークな差別化が求められるという点も印象的でした。例えば、ある有名なコーヒーチェーンが、第三の居場所というコンセプトを打ち出すことで顧客のロイヤリティを高めている例が挙げられます。 高価格の壁はどう乗れる? 現在検討している新規事業のプロダクトが高価格帯であることから、商品にまつわる体験をしっかりと付与することが説得力の向上につながると改めて認識しました。高い価格設定は、特別な理由がない限り実現が難しいため、顧客へのヒアリングや過去の成功事例をもとに、どのような付加価値が効果的かを探ることが重要です。さらに、身近なサービスや商品の体験が心に響く理由を深く考え、高価格であっても購入したい、体験したいと思わせるオンリーワンの価値を追求していきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く未来への一歩

問題点は何か? 問題解決に向けた仮説の考え方として、まずは「問題は何か」「どこに問題があるのか」「なぜ問題が発生しているのか」「その問題をどうすべきなのか」という点を整理することが重要です。これにより、現状の課題を明確に把握し、解決策を具体的に検討するための土台が作られます。 仮説の意義は? さらに、仮説を立てる意義として、検証マインドの向上、説得力の増強、問題意識の高さ、そして問題解決へのスピードアップが挙げられます。仮説をもとに行動することで、より迅速かつ正確な対策が講じられるため、業績の結果報告を早期に行うことにもつながります。 仮説の使い分けは? また、仮説には「結論の仮説」と「問題解決の仮説」が存在し、正しく使い分けることで、思考の精度が向上するだけでなく、具体的な改善策を導き出すことが可能になります。これまで漠然と問題に取り組んできた経験を振り返り、より効果的な仮説の立て方や、仮説を絞り込む過程について学ぶ必要性を強く感じました。 実務でどう活かす? 今後は、仮説の立て方やその検証プロセスをより深く学び、実務においてスピーディかつ精度の高い成果を生み出すための知識と技術を身につけたいと考えています。

戦略思考入門

受講生の声が描く未来への一歩

情報整理はどうする? 情報整理の際は、枠組みやフレームワークに沿って考えることが大切です。常にターゲットである顧客の視点に立ち、情報を整理し、提供する価値を明確にする必要があります。 差別化のポイントは? 差別化を検討する際には、顧客と競合双方の視点を取り入れ、実現可能性や模倣性を考慮することが求められます。施策の根底には差別化があり、そのためには顧客にとっての具体的な価値を追求することが重要です。 戦略の重みは? また、ポーターの基本戦略については、いずれかの戦略に偏るのではなく、各戦略の重みを理解した上で、バランスを取る必要があります。さらに、VRIO分析では単に強みを抽出するのではなく、その強みをどのように競争優位に変えるかを検討するフレームワークとして活用することが重要です。 優位性をどう活かす? 営業や提案活動の改善において、競合との差別化は大きなテーマです。今後は、単なる「強み」ではなく、「競合優位性」が何かを見極め、VRIO分析を通じた自社資源の棚卸しと評価を行います。そこから導き出された優位性を活かし、顧客視点に立った提案の質を高め、他社が模倣しづらい価値訴求へとつなげていきたいと考えています。

データ・アナリティクス入門

多角的視点で得た新たな発見

フレームワーク活用のコツは? 課題を考える際、初めから新たに考えるのではなく、まず適切なフレームワークに当てはめることで、情報の漏れなく抜け漏れを防ぎ、新たな観点を追加することが可能です。フレームワークを活用することで、論点の整理がしやすくなります。 仮説はどんな視点で? 仮説を立てるときは、単一の固定観念にとらわれず、複数の仮説をさまざまな切り口から整理することが求められます。こうした多角的な視点から検討することで、仮説の網羅性が向上し、より効果的な対策が検討可能となります。 情報収集の手順は? データ収集のプロセスでは、誰にどのように情報を求めるかが非常に重要です。単に各種資料に頼るのではなく、実際に知識を有する人を特定し、確認の方法を明確にすることで、比較や反論の排除にも努めるとよいでしょう。 施策実践の始め方は? 施策を検討する際は、目的に適したフレームワークを調べること(例としてChatGPTへの問い合わせ)から始め、複数の角度で仮説を定義する必要があります。また、データ収集においては、各種資料の作成者を特定し、作成の意図や補足情報、意見などアドバイスを求めながら取り組むことで、より充実した施策の策定が期待できます。

データ・アナリティクス入門

仮説と検証で切り拓く成長

問題発見はどう進める? 問題の原因を探るため、まずプロセスごとにアプローチする手法を学びました。その中で、A/Bテストを活用し、仮説を立てた上で実際に検証を重ねる方法が効果的であると理解できました。また、総合演習を通して、これまでの学習内容を振り返り、自分の知識を整理する貴重な機会となりました。 仮説検証は効果的? データ分析においては、目的を明確にし、分析に入る前に仮説をもつことの重要性を再認識しました。分析プロセスを着実に進めるとともに、効果的な切り口でデータを把握することが求められると感じています。取り組んでいるサービスのユーザ活用場面を拡充するためには、利用シーンをプロセスに分解し、それぞれを検証した上で改善策を策定することが必要です。 分析の進め方は? 具体的には、各プロセスに対して適切なデータを条件を揃えて抽出し、抜け漏れなく検証を進めることが求められます。改善策を検討する際には、複数の選択肢を根拠に基づいて検討し、基準を設けることで効果的な施策に絞り込むことが重要です。また、分析作業は複数のメンバーで進めるため、作業開始前に目的や意味合いを共有し、各メンバーが同じ認識で取り組むことにも留意すべきだと実感しました。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

データ・アナリティクス入門

問題解決の4ステップで見える未来

問題解決の切っ掛けは? 問題解決の4ステップを意識して取り組むことで、整理して分析できることが理解できました。普段、無意識に考えると、思考が散漫になり、思うような成果やアイデアが得られなくなることを実感しています。特に、「What(何が課題か)」をしっかり意識することで、その後の「Where(どこに問題があるか)」の分析が効果的になると感じ、今後もこの点を大切にしていきたいと思います。 次の対策はどうする? また、次の打ち手を検討する際には、あるべき姿(目標数)と現状(実績)を比較しながら、問題解決の4ステップを具体的に適用し、適切な対策を講じたいと考えています。これまでにも課題を見つけ対策を実施してきたものの、今後はさらに精緻な対策が立てられるよう努めたいと思います。 フレームワーク活用は? 次週からは、フレームワークの考え方を意識し、以下のステップを取り入れていきます。 ① 現状の数字を把握する ② MECEやロジックツリーを活用して整理する ③ What(何が課題か)を明確にする ④ Where(どこに問題があるか)を検討する ⑤ Why(なぜ起きているか)を分析する ⑥ How(どうするか)を具体化する

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

クリティカルシンキング入門

振り返りから見えた自己理解と成長のヒント

振り返りに気付いたことは? 今週はこれまでの受講内容を振り返りました。その中で気付いたのは、思った以上に講義の内容を思い出せないことです。時間が経ったことも一因でしょうが、理解しきれていなかった部分があったのだと思います。講義サイトが参照可能なうちに、もう一度見直したいと考えています。 プロジェクト開始までの時間管理 予算等の都合で、当初の検討からプロジェクトの開始まで時間がかかることはよくあります。今回も同じようなことが起こり得るため、検討時の整理結果をわかりやすく残すことを意識したいです。 クリティカルシンキングの活用法 クリティカルシンキングは、初めて取り組む内容や難しいプロジェクトの担当になったときに役立てたいと考えています。ただ、自分の性格上、「●●をやらないと」と思い込むと考えが停止してしまうことがあります。また、億劫になり手を付けないこともあります。 行動を起こすための工夫は? そのため、まずは思いついたことをつらつらと書き連ねて、着手のハードルを下げたいと思います。その後、クリティカルシンキングで学んだことを用いて、上記を検証したり新しい視点から論点整理を実施し、計画策定や結論出しを行いたいと考えています。

データ・アナリティクス入門

ロジックで拓く学びの扉

ロジックツリーって何? ロジックツリーとは、ある問題や課題に対して、その構成要素を分解し整理するためのワークフレームです。複雑な要素を明確にし、原因や解決策を見つけ出すためには、MECE(もれなくダブりなく)を意識することが重要です。 なぜ手順が必要? システム導入のプロジェクト進行で発生する問題に対して、ロジックツリーを活用する具体的な手順は以下の通りです。まず、タスクが遅延している原因という起点となる要素を設定します。次に、その要素を「スケジュールに対する意識不足」「リソース不足」「スケジュール自体に問題がある」などといった具体的な要因に分解します。 どう深掘りするの? さらに、各要素について深掘りし、たとえばリソースが不足している場合には、タスクに必要な要員を明確に割り出していなかったことが原因として考えられます。その上で、各原因に対して解決策を検討します。具体的には、必要な要員の割り出しを行い、タスクを完了するためにどの要員がどれだけ必要かを明確にし、要員の調整を試みるという方法です。 実行計画はどうなる? 最後に、検討した解決策に優先順位を付け、実行計画を立てることが、問題解決のために有効であると考えられます。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

「検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right