データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

戦略思考入門

初めてのバリューチェーン体験で広がる視野

どう視野を広げる? 経営者の視野を持ち、大局的に物事を見る姿勢や、ジレンマを過度に恐れず他者の意見をしっかり聴くことが重要だと感じました。これらの点は、自分自身の苦手領域でもあり、改善に向けた具体的なアクションが必要だと認識しています。 どの分析を活用する? フレームワークとしては、3C分析とSWOT分析はこれまでの金融業界での経験から馴染みがありましたが、バリューチェーン分析は今回初めて学びました。担当エリアに製紙業界のお客様が多い中、不景気=収益性低下という認識が根強い現状に対して、各社の強みや弱みを整理するために、この分析手法が非常に有効であると感じています。 顧客実情は分かる? また、法人営業として様々な業種の経営者と接する中、実は企業のバリューチェーンについては十分理解されていないケースが多いと実感しています。バリューチェーン分析に慣れることで、顧客の実情や背景をより深く把握し、3CやSWOT分析を組み合わせた提案が可能になると期待しています。これにより、マクロな経済環境も踏まえたより適切なアプローチができると考えています。 実践に向けてどう? 今後は、主要な顧客のバリューチェーンをまず徹底的に分析し、競合他社との比較を行います。その上で、SWOT分析および3C分析を通じて、各社の強みや弱みを整理し、経営者との面談でフィードバックを受けることで、更なる学びと実践に活かしていきたいと思います。

データ・アナリティクス入門

数字とロジックで捉える課題解決

問題点の整理はどうする? GAILを通じて、問題点の洗い出しが不十分であると痛感しました。直面している課題や状況を明確に言語化することがまず必要であり、そのためには「あるべき姿」と「現状」とのギャップに着目して問題点を整理することが重要だと学びました。たとえば、「なぜ赤字なのか」「なぜ生徒が集まらないのか」といった問いから、まずは数字に基づいて優先的に解決すべき問題を特定し、次に具体的な解決策(how)を検討するプロセスが非常に参考になりました。 計画実績のギャップは何故? また、販売実績や利用状況の分析時には、「なぜ計画に対して実績が出ないのか」「目標に対して利用状況がどのように乖離しているのか」という問いを持つことはもちろん必須ですが、さらに、どの業態の顧客が利用しているのか、あるいは利用していないのかといった具体的な観点から問題を深掘りすることも大切だと感じました。いきなり解決策に飛びつくのではなく、what(現状把握)→where(問題箇所の特定)→why(原因の追究)→how(解決手法の検討)の流れを大切にすることが、問題解決への着実なアプローチだと考えています。 MECE活用は有効? さらに、問題解決プロセスをきちんと踏む上で、MECEの考え方は非常に有効であると実感しました。その一環として、ロジックツリーを活用しながら実績の分析を進める手法は、今後の業務にも積極的に取り入れていきたいと思います。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

仮説とデータで切り開く未来

データ分析の流れはどうなる? 講座全体を通して、データ分析の流れを構築する大切さを改めて認識しました。どのような状況から仮説を立て、どのデータセットを用いて表現するかといったストーリーを意識することができました。各種フレームワークや分析、表現の手法はあくまでメソッドであり、講座前に自学していたため、今回はそれらの手法をいかに組み合わせてゴールに近づくかが重要だと感じています。 会社での分析はどう進む? 現在、新しい会社で財務会計を担当しており、上記の資料やデータを集めながら一工夫加えた分析と仮説を展開する予定です。具体的な運用はまだ未定ではありますが、原価や経費、売上のデータ分析にも今後取り組んでいきたいと考えています。 学びの道はどこへ? 以前から学びたいと思っていた分野ですので、今後の学びの方向性として以下の点を進めていくつもりです。まず、統計学をきちんと学び上げ、社会人向けの良書や統計検定の復習を通じて知識の向上を目指します。また、今回の講座で学んだマーケティングや他の考え方とデータ分析を組み合わせるため、以前かじったマーケティングについても更に深掘りしたいと思います。 ITスキルはどう磨く? さらに、Python、SQL、データベース構築、クラウド技術など、データ分析に必要なIT分野の知識も広げる計画です。資格検定の受験も視野に入れながら、体系的に学んでいきたいと思います。

戦略思考入門

理論と実践で磨く差別化戦略

戦略はどう進める? 事業戦略において、差別化の有効性は非常によく理解できました。しかし、差別化を進める際に適切な戦略が伴わなければ、その効果は全く発揮されない危険性も十分に感じられます。つまり、ただ単に違いを打ち出すだけではなく、正確なフレームワークを活用してアイデアを整理し、抜け漏れがないか慎重に検討することが不可欠です。ブレーンストーミングで自由に意見を出し、その後、フレームワークに沿って理論的に構成することで、初めて実践的な戦略が構築できると考えています。 資源課題の解決は? 一例として、クリティカルミネラルの問題が挙げられます。現状では、特定の二大勢力の対立に左右される状況にありますが、この課題に対しては、例えば自国で資源権益を確保する、外部依存を避けた技術の構築、リサイクル推進といった独自のアプローチが考えられます。さらに、バリューチェーン分析を通じてボトルネックを明確にし、投資対象を特定するという手法も有効だと考えられます。 市場競争の本質は? また、差別化とは別に、多くの業態が激しい競争を繰り広げるレッドオーシャン市場にも注目が必要です。例えば、クラウド分野では複数のシステムが存在し、最終的には価格競争に収束する傾向が見受けられます。主要なプラットフォームに利用が偏る一方で、その他のシステムがどのように市場で生き残っているのか、その事業戦略を改めて考察してみる価値があると感じました。

データ・アナリティクス入門

3Cと4Pで学ぶ仮説の魔法

仮説構築はどう効率化? 仮説を立てる際、ゼロからすべてを考えると時間がかかるため、よく使われるビジネスフレームワークを活用することで、より効率的に仮説を構築できます。 3Cの有用性は? 代表的なフレームワークのひとつに「3C」があります。これは事業戦略を分析する際に、顧客(Customer:市場・顧客)、競合(Competitor:競合)、自社(Company:自社)の観点から考える手法です。具体的には、顧客が誰か、市場が今後伸びるのか縮小するのか、どの競合が存在し、どれほど強いのか、そして自社のサービスが顧客のニーズを満たしているかといった点を検討します。 4Pのメリットは? もうひとつは「4P」で、自社のサービスをさらに詳しく分析するためのフレームワークです。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)という観点から、製品やサービスの質、適正な価格設定、提供方法や手段、そして効果的な販売促進の方法などを具体的に検証します。 導入評価の視点は? また、医薬品の導入評価時において、アセットの事業性評価を行う際は、3Cのフレームワークを意識することが重要です。ターゲットとなる患者層(Customer)、競合他社(Competitor)、自社の立ち位置(Company)という視点から評価を進めることで、より的確な判断が可能となります。

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

「分析 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right