データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

クリティカルシンキング入門

実践で磨く分解の極意

全体像はどう把握? 本講座では、全体をしっかり定義した上で作業を進める重要性を実感しました。まず全体像を捉えることで、分解の作業がスムーズになり、全体に漏れがなく整然とした分析が可能だと感じました。 MECEは何を意味? また、分け方においてはMECE(抜けや重複がない)を常に意識することが大切だと学びました。例えば、単に「若者」や「リピーター」といった大雑把なカテゴリーで分類してしまうと、定義が曖昧になり、漏れやダブりが発生する可能性があるため、年齢や来店頻度など定量的な指標を用いることが有効です。 複数切り口は有効? さらに、仮説を持ちながら複数の切り口でデータを分類する手法には大きな意義を感じました。年代を10代ごとに分ける方法や、学歴など別の視点で区切る方法など、異なるアプローチを試すことで、より実態に即した傾向を掴むことができると感じました。 視覚チェックで見える? 加えて、図を描くなど視覚的な手段を用いてチェックすることで、直感だけでは気付けなかった課題を明確にできる点にも非常に参考になりました。最終的には、分けた後に「本当にそうか?」と問い直すプロセスが、より深い理解と洗練された分析に結びつくと実感しています。 実践から何を得る? 最後に、考える前にまず実際に分けてみることの大切さを学びました。実践を通じて自分自身の仮説を検証し、新たな視点を得るプロセスは、今後の分析活動に大いに役立つと感じています。

デザイン思考入門

あなたも気づく新授業の扉

講義終了の感想は? 前期の講義終了後、学生アンケートの結果が教員にフィードバックされ、講義改善に生かされる仕組みがあることを改めて実感しました。ゼミの学生からも率直な意見が求められる中、今回の講義を通じて暗黙知の視点の大切さに気づき、複数の教員に授業見学をお願いするに至りました。 主体的授業の課題は? これまでは、学生が主体的に考える授業を目指し、講義形式をできるだけ避けるよう努めてきました。しかし、学生の受講態度や教員の講義手法を観察する中で、自分に不足している視点が多いこと、そして現場には根本的な課題やニーズが多く存在することを痛感しました。 現場で何を学ぶ? 課題の明確化のため、まずは現場に出向き、実際の行動や習慣を観察することが重要だと感じました。観察では、意識されにくいユーザーのニーズや行動の癖を捉え、インタビューではユーザーが自覚している経験や知識を言語化するという違いがあります。 定性分析の効果は? また、定性分析を進める中で、KJ法や付箋を利用した方法を取り入れ、情報の整理やグループ化を行うことの有用性を学びました。具体的には、問題の本質を捉えること、得られた洞察を整理・可視化すること、そしてユーザーの状況や課題に対する解決策の提案を通じた顧客課題説の作成がポイントとなります。 今後の改善策は? 最後に、今後も常にユーザー中心の視点を維持し、検証と改善を重ねる姿勢が必要であることを強く感じました。

マーケティング入門

顧客の声が導く業務革新

マーケティングの本質は? 今回の講座では、マーケティングの基本要素である「何を売るか」「誰に売るか」「どう魅せるか」を体系的に理解できました。単なる商品提供ではなく、顧客の潜在ニーズやペインポイントを掘り起こし、体験価値を創出するプロセスであることを再認識しました。行動観察、デプスインタビュー、STP分析などの手法を学び、差別化戦略やイノベーション普及の要件、さらには内部顧客視点の重要性にも気づくことができました。 バックオフィスの変革は? また、自身のバックオフィス業務において、従来の補助作業から脱却し、営業店や社内を「顧客」として捉え、価値提供に取り組む必要性を実感しました。業務プロセスを「スピード×正確性」や「コスト削減×利便性」といった複数の軸で再設計し、数値や具体例を用いて価値を明確に伝えることが求められます。この取り組みにより、内部顧客の安心感や満足度が向上し、全社的な競争力強化にも寄与することが期待されます。 業務改善の策は? 今後は、まず日々の業務終了後の振り返りや小規模なPDCAサイクルの実施に取り組み、データ分析を通じて業務効率やペインポイントを定量的に把握していきます。さらに、マーケティングの視点を取り入れたセグメンテーションやポジショニングの再検討、具体的な業務プロセスの改善策を検討し実行する予定です。同僚とのディスカッションやフィードバックも積極的に活用し、持続的な改善と成長を目指していきます。

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

クリティカルシンキング入門

グラフ化で見える学びの新発見

自分で動かす意義は? 自分で手を動かしてみることで、理解の解像度が上がるのを実感しました。特に、データをグラフ化して視覚的に捉えるという発想は新鮮で、印象に残りました。 実践で何が見えてる? 自ら手を動かして学ぶことで、学習の理解が深まりました。また、グラフ化の方法についても新しい発見がありました。こうした具体的な例を取り入れることで、理解をさらに進められると思います。 継続の理由は? 今後も、手を動かしながら実践し、新しい手法を積極的に取り入れていくつもりです。継続することが重要だと感じています。 売上分析はどう見る? 売上の過去3年分の推移を、担当別、単科別、クライアント別、職種別に分析すれば、自社の戦略を見出せそうです。特に業績が振るわないコンサルタントについては、売上を既存客と新規クライアントに分けて要因分析し、営業戦略に活用できると思います。また、決定プロセスを徹底的に分析し、CSF(Critical Success Factors)を担当別に分析することもイメージできました。全社売上におけるお客様の属性の変化も分析する価値がありそうです。 実行計画はどうなる? これらの分析を早速実行してみたいと思います。まずどのデータを使うか探し出して加工し、毎週1時間程度の時間を確保して、自分の事業の特徴を深く理解していく予定です。そして、理解した内容を営業戦略にも活かしていきたいと考えています。

データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

戦略思考入門

初めてのバリューチェーン体験で広がる視野

どう視野を広げる? 経営者の視野を持ち、大局的に物事を見る姿勢や、ジレンマを過度に恐れず他者の意見をしっかり聴くことが重要だと感じました。これらの点は、自分自身の苦手領域でもあり、改善に向けた具体的なアクションが必要だと認識しています。 どの分析を活用する? フレームワークとしては、3C分析とSWOT分析はこれまでの金融業界での経験から馴染みがありましたが、バリューチェーン分析は今回初めて学びました。担当エリアに製紙業界のお客様が多い中、不景気=収益性低下という認識が根強い現状に対して、各社の強みや弱みを整理するために、この分析手法が非常に有効であると感じています。 顧客実情は分かる? また、法人営業として様々な業種の経営者と接する中、実は企業のバリューチェーンについては十分理解されていないケースが多いと実感しています。バリューチェーン分析に慣れることで、顧客の実情や背景をより深く把握し、3CやSWOT分析を組み合わせた提案が可能になると期待しています。これにより、マクロな経済環境も踏まえたより適切なアプローチができると考えています。 実践に向けてどう? 今後は、主要な顧客のバリューチェーンをまず徹底的に分析し、競合他社との比較を行います。その上で、SWOT分析および3C分析を通じて、各社の強みや弱みを整理し、経営者との面談でフィードバックを受けることで、更なる学びと実践に活かしていきたいと思います。

「分析 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right