クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

デザイン思考入門

会話で掘り起こす本音の真実

定性分析の意義は何? 定性分析という言葉は以前から耳にしていましたが、具体的な内容についてはあまり理解していなかったため、普段使っている手法ということもあり、大まかなイメージは持っていました。日常的に顧客と会話する中で、提供しているサービスに対する意見や不満を雑談の中からヒアリングし、複数の顧客の声を集めることで共通の改善ポイントを見つけ出してきました。フレームワーク化はしていなかったため、これを機に試してみることにしました。 顧客の反応はどう? また、ある顧客で認識した課題を、別の顧客にも「こういった課題はありませんか」と確認することがあります。その結果、多くの方から「あ、そうだね」と言われ、潜在的な問題を掘り起こせたような気がする反面、半ば無理やりに認識させたのではないかと感じることもあり、共感フェーズの難しさを改めて実感しました。 対応策は進むか? さらに、特定の条件下にある利用者の特定シチュエーションでの課題に焦点を当てる重要性は理解しているものの、実際にその課題に対して具体的な対応策を講じるまでには至っていません。対象となるケースが想定以上に少ないため、コストメリット的にも実施判断にまで至らないのが現状です。今後は、次のフェーズで小規模なテストなどを通じ、解決策を模索していければと考えています。

データ・アナリティクス入門

4ステップで掴む課題解決の秘訣

4ステップを理解? 今週は、問題解決の4ステップ「What(何が問題か?)」「Where(どこに問題があるか?)」「Why(なぜ問題が起きているのか?)」「How(どうするか?)」を学びました。これにより、問題を定量化し、範囲を絞り、原因を分析して具体的な解決策を導くという、論理的な課題整理の手法が実践的に理解できました。 ロジックツリーの効果? また、ロジックツリーの活用法も学び、問題を「モレなく・ダブリなく(MECE)」分解する方法が、構造的な分類や深掘りにとても役立つと感じました。現場での意思決定や具体的な課題整理に、この手法を応用できる点が印象的でした。 企画立案のコツは? 企画の立案時には、問題解決の4ステップを活用し、過去と未来の問題に分けて検討することで、理想の状態を明確にし、提案が本質から外れないよう注意することができると実感しました。加えて、アイデア出しの際にロジックツリーを用いることで、問題を細かく整理し、深い考察が可能になる点も大きな学びでした。 実行前に再確認? 思いついた企画をすぐに実行に移すのではなく、一度立ち止まって問題解決のステップを確認すること、そして企画が進行している段階でも都度、本来あるべき状態と現状のギャップを再確認することの重要性を感じました。

アカウンティング入門

数字で紐解く経営のヒント

財務諸表の基礎は? 財務諸表は大きく3種類に分かれます。損益計算書(PL、Income Statement)、貸借対照表(Balance Sheet)、キャッシュフロー計算書(Cashflow Statement)です。 会計の語源は? また、「アカウンティング」という言葉の語源は「説明する」という意味に由来し、数字の力を活用して説明することの重要性を示しています。数字を使って物事を語る手法が、経営判断において非常に有効であることを改めて実感しました。 変化はどこ? まず、前月の事業活動の振り返りにおいては、売上高、利益率、人件費、変動費などの数字の変化を財務諸表から見出すことが大切です。これにより、どの部分で業績に変化があったのかを具体的に把握できます。 戦略転換の理由は? そして、数字の本質的な意味を理解し、これまでの変動の背景を考察することが求められます。その上で、今月の事業活動における方向転換や事業戦略の立案、中長期的な事業計画の策定へと結びつけることが可能となります。 業界や国の違いは? さらに、財務諸表を分析する過程で、業界ごとの特徴や市場、国別の違いを検討することも重要です。これにより、より広い視野で事業環境を捉えた戦略を立案するための手がかりが見えてきます。

データ・アナリティクス入門

理想と現状のギャップで見える未来

理想と現状はどう違う? 何か問題が生じると、つい目の前の課題にとらわれがちですが、理想の状態と現状を比較することこそが、本当の問題や課題を明確にするために重要だと感じました。これまで漠然と考えていたことが、言葉として整理され、しっかりと理解できるようになったのが印象的です。 整理解決の手法は? また、整理された問題に対しては、ロジックツリーやMECEの手法を用いることで、より正確かつ詳細に課題を捉え、その解決策へとつなげる重要性を実感しました。単に現状を把握するだけでなく、目指すべき姿に向けた具体的なアプローチを考えるプロセスが、問題解決において効果的であると確信しています。 評価をどう転換する? さらに、現状の評価についても、単にマイナスな状況を改善するのか、あるいはプラスに転換するのかという視点を持つことで、解決策がネガティブな側面だけでなく、ポジティブな側面にも働きかける可能性があることに気付きました。例えば、売上が順調に伸びている現状であっても、どの要因がその結果を生み出しているのか、数字だけでは説明がつかない部分があると感じました。こうした状況では、現状から目標に至るまでの具体的なアプローチを詳細に分析することにより、現在の売上についても明確な説明が可能になるのではないかと考えています。

データ・アナリティクス入門

平均値の裏側に潜む本当のデータを読み解く

平均値の理解とは何か? データ分析において、平均値という言葉に惑わされ、その中身を詳しく見ることを怠りがちだったことに気づかされました。改めて、目的を無視した代表値の活用が良い分析結果につながらないと感じました。平均値にも加重平均や幾何平均など様々な種類があり、それらの算出方法を学べたのはとても良かったです。 代表値への新たな挑戦 現在、自分が理解したつもりでいる部分が多いと考えています。今後は、他の練習問題にも挑戦し、世の中に溢れている代表値がどのように算出されているのかを更に考えられるように努めたいです。 分析結果をどう伝えるか? データを分析し加工することによって、相手に何を伝えたいのかを明確にし、グラフや代表値の算出を行いたいと思いました。また、公的データでも分かりやすい平均値だけを提示して受け取り手の印象に強く残す手法がありますが、代表値の裏側にあるデータの分布を調査した上で、そのデータから何が言えるのかをしっかり考えたいと思います。 データ加工で心掛けること 以下の点を心がけます: - 加工データの裏側を考える癖をつける - 自分でデータを加工し、伝えたいことが伝わるようにする - データ加工の前に必ず要件定義を行う - 様々な平均値の算出方法について、仕組みや成り立ちを理解する

データ・アナリティクス入門

マーケットの広がりを感じる分析の魅力

データ比較で新たな発見をどうする? 他のデータと比較することで、新たな洞察を見出すことが重要です。分析のプロセスとしては、まず目的を明確にし、次に問いに対する仮説を立て、その後データを収集し、最終的に分析によって仮説(ストーリー)を検証します。 どの分析視点が有効か? 分析における視点としては、インパクト、ギャップ、トレンド、ばらつき、パターンを見ることが大切です。具体的なアプローチとして、代表値(単純平均、加重平均、幾何平均、中央値)やばらつき(標準偏差)を使うことで、データの特徴を理解します。 仮説検証で気づく新たな問題は? 提案する際に、自分の仮説を立証するためのツールとして、これらの手法を使いたいです。仮説には正解がないことから、むしろ仮説が間違っている場合は、実際の状況とのギャップに気づきやすくなり、新たな問題発見につながります。ですので、間違った仮説を立てることも恐れず、仮説の幅を広げたいと思います。 勘と経験を超えて新たな仮説を 長年、勘と経験で仮説を立てていましたが、自分の思考範囲を超えた仮説を立てることで、マーケットの状況を広く知り、新たな問題点に気づけるようになります。また、いろいろなグラフを作成し、自分の仮説に対して一番説得力があるものを比較してみたいと考えています。

データ・アナリティクス入門

データで挑む問題解決の旅

問題解決の順序はどう? 問題解決のステップとして、「What, Where, Why, How」の順序で進めることが重要です。やみくもに分析を開始するのではなく、順序立てて進め、数字に基づいたストーリーを構築することが求められます。データ分析においては、比較対象をはっきりさせ、集めたデータをしっかりと加工し、原因を特定する努力が重要です。 採用改善はどう進める? 採用手法を模索する中で、SNSや自社サイトの採用ページの改善を進めるには、コンバージョン率やファネル分析を活用して、離脱ポイントを特定することが有効だと考えました。それにより、コンテンツの見直しも可能になります。 企画提案の進め方は? このように分析を進める際は、初めに仮説を立て、結論のイメージを持つことが肝要です。何のために分析をするのか目的を明確にし、課題を特定するステップで進行することが大切です。特に、来年度に向けての企画提案の時期においては、データを活用して説得力のある資料を作成したいと考えています。そのために、データ分析の手法を復習し、自分自身の知識として確立する必要があります。また、データをさらに深く理解するためには、エクセルの関数についても知識を深めることが必要そうです。これについては、AIを活用し、日々学び続けたいと思っています。

データ・アナリティクス入門

論理ツリーで磨く実践スキル

なぜ手法を再確認? 今回の学習では、問題解決のステップ(What/Where/Why/How)に沿って、各段階でどのようなアクションを取るべきかを再確認することができました。普段の業務でも同様の手法を取り入れていますが、今回の具体例を通じて現状の見直しに役立つと感じました。 適切な分解は何故? また、ロジックツリーに取り組む際、すべての要素を漏れなくダブりなく洗い出そうとするあまり、時間をかけすぎてしまう傾向があることを改めて実感しました。特に末端の階層にこだわりすぎず、適切なレベルで分解するというアドバイスは大きな気づきとなりました。 現業務の解析はどう? 現在の業務では、顧客へのサービス提供に際してコスト試算や自部署の予算計画、実績の分析を行っています。例えば、コスト試算においては提供価格、原価、販管費といった大枠から、さらに細かい費目に分解して検証していますが、構成要素をツリー状に分解するという手法は初めての体験でした。今回の学びを現業務にも活かせると考えています。 次の改善策は何? 今後は、自部署における予算計画、実績把握、コスト試算のプロセスに、ツリー状の分析手法を取り入れてみます。一度試してみて、試算の妥当性や課題の特定にどのような効果があるかを検証していきたいと思います。

データ・アナリティクス入門

仮説で突き抜ける分析の世界

分析の基本を確認? この講座では、分析とは単にデータをそのまま受け入れるのではなく、要素を分類し比較する作業であることを学びました。現状を鵜呑みにするのではなく、多角的に考え、目的や仮説を明確に持って取り組む重要性が印象に残りました。 分類と比較の仕方は? 具体的には、まず分析の基本として、データを分類することが必要だと再認識しました。そして、その分類された情報を比較することで、より深い理解が得られると感じました。さらに、明確な目的や仮説を持つことで、分析の取り組み方が一層意識的になり、有益な示唆が得られる可能性が高まると実感しました。 実務での分析戦略は? また、現職の業務においては、クライアント向けのマーケティング戦略を立案する際、膨大なデータの中から適切な視点を見出し、効果的な分析を行うことが求められます。目的や仮説を明確に持ちながら、意識的な比較検証を進めていくことで、売上に貢献できるような分析手法を確立していきたいと考えています。 着眼点を模索中? さらに、与えられたデータのどの部分に着目すべきか、どの分析手法を適用すべきかについては、まだ模索している部分もあります。今後は、理論を学びながら実務に直結する知識やスキルを身につけ、より具体的な分析ができるよう努力していきたいと思います。

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

データ・アナリティクス入門

仕事が変わる学びのヒント

a/bテストはどう? 複数の打ち手が存在する場合、どの選択肢が有効かを判断する上で、a/bテストを活用する方法が効果的です。現状、すぐに取り入れられる業務は思いつかないものの、WEBサイトを活用した効果測定が必要な際には、積極的にこの手法を取り入れていきたいと考えています。 自己訓練の意義は? また、業務に限らず日常生活においても、what-where-why-howの視点を意識して自己訓練を重ねることで、分析能力の向上が期待できると感じています。 障害分析はどう? さらに、このwhat-where-why-howの手法は、障害分析から品質向上のための打ち手を検討する業務において、非常に有用です。さまざまなデータを収集し、仮説を立てながら具体的な対策を検討し、実践していくというプロセスは、日常業務においても積極的に取り入れていく所存です。 対象選定の方法は? まずは、打ち手が必要な対象の選定から始めたいと考えています。現状、日々さまざまな障害が発生しているため、効率よりもまずは障害が削減できる対象を明確にした上で、詳細な分析に取り組んでいくつもりです。そして、学んだ内容を個人のスキルに留めず、職場全体で共有することで、社内の共通ノウハウとして全体のレベルアップにつなげたいと思います。

「分析 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right