データ・アナリティクス入門

データが紡ぐ学びの物語

データはどのように? データは、数字、視覚、そして数式という三つの観点から捉えることができます。まずは平均値を確認し、その値を基に仮説を立てます。その上で、実際のデータのばらつきを評価し、平均値だけでは把握しきれない場合には標準偏差を活用します。標準偏差が小さいとデータのばらつきは少なく、大きい場合はばらつきが大きいことを示しています。 視覚情報は活かせる? また、データの種類に応じて適切なグラフを選び、視覚的に理解しやすいようにすることが重要です。与えられたデータやそこから計算された数値だけでは十分な情報を得られないこともあるため、データを客観的に評価し、集約しすぎていないかどうかやばらつきの状況を分解して考慮する必要があると感じました。 偏りをどう防ぐ? さらに、単に平均値を求めるだけでなく、標準偏差や中央値などの他の指標も用いることで、、より偏りの少ない分析が可能となります。状況に応じて平均、最大値、最小値以外の指標も活用し、迅速に必要な情報を把握できるようにすることが求められます。

戦略思考入門

顧客視点で差別化!戦略的アプローチ

なぜ顧客目線が大事? 差別化を考える際には、まず顧客の視点が重要であることを学びました。簡単な施策では競合他社も同様のことを実行している可能性があるため、競合の動向をリサーチすることも必要です。差別化を実現するために、3C分析やVRIO分析などのフレームワークを活用し、実現可能かつ持続可能な方策を考えていきたいと思います。 ターゲットは誰? まず、ターゲットを明確にすることが重要です。施策の対象となる顧客が誰なのかをはっきりとさせます。そして、競合他社のリサーチを行い、彼らの特色や優位性を理解することが必要です。 報告はどうまとめる? これらの情報を基に、フレームワークを用いて実現可能な施策を考えていきたいと思います。まずは業界全体の特色を整理し、その中で自社の特色や優位性を理解し、まとめていきます。広い視野で業界を先読みし、市場分析を行うことで他社との差別化を図り、経営会議で報告できるようにしたいです。報告資料には十分なエビデンスを含め、経営層が納得できる内容にしたいと考えています。

クリティカルシンキング入門

視点を広げるセグメント分析の挑戦

切り口は十分ですか? 切り口については、もれなく重複なく組み合わせ、詳細化できていました。しかし、視点が不足していることに気づきました。例えば、お客様の分け方や、店舗側の情報の分け方など、他にないかと自問を繰り返し、新たな示唆を模索したいと思います。 社内情報の組み合わせは? お客様の情報に基づく分解は行っていたものの、社内の情報、例えば地域、経験年数、所属組織などを組み合わせることで新たなセグメントを作れないか試してみます。また、差がないことが判明することも価値のある情報だと理解しました。そこで、まずは試してみるという姿勢で臨むことにしました。 データの傾向はどうですか? 具体的には、まず切り口の分類として、お客様情報、営業社員情報、商品情報などを挙げ、それぞれの分類を詳細化します。そして、来週月曜日にデータに適用して傾向を確認する予定です。さらに、詳細化を進めるために切り口の組み合わせを試し、数字だけでなくグラフで視覚化することで、全体像を捉えたり、比較しやすい状態にします。

戦略思考入門

競合分析から見える戦略のヒント

何から着手すべき? 戦略的に考える際、まず何から手をつければよいのかが不明確でしたが、3C分析やSWOT分析などのフレームワークを活用することで、検討すべき事項が明らかになりました。また、全体感を常に意識することの重要性も再認識しました。 競合市場の課題は? 現在の課題としては、競合が10社以上存在する市場の中で自社の優位性をどのように構築し、持続的な成長を実現するかが挙げられます。まずは他社の分析から始め、自社が持つ競合優位性を見極めることが必要です。 実施策はどんなもの? 具体的な取り組みとしては、以下のプロセスが考えられます。 1. 競合分析の実施  ・市場における競合のポジションや戦略を調査する  ・競合の強みと弱みを分析する 2. 自社の競合優位性の見極め  ・自社の強みを整理する  ・市場ニーズとのギャップを特定する 3. 差別化戦略の策定 4. 社内での情報共有と連携の強化 これらのプロセスを通じて、より明確な戦略の構築を目指します。

データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

戦略思考入門

ターゲットに響く戦略の軌跡

差別化の核心は? いざ差別化を考えようとすると、手順を理解せずに安易な策に走ってしまう危険性を痛感しました。まずはターゲットを明確に定め、そのターゲットから支持を得ることが大切だと学びました。また、検討時にはVRIOなどのフレームワークが有効であることも理解しました。優位性を確保するためには、他社に容易には真似できない、価値ある施策を組織的に実行できるかどうかを評価する必要があると感じました。さらに、コストや付加価値、ターゲットなど、どの点で差別化を図るのか、自社の強みを十分に理解することが戦略構築の鍵であると再認識しました。 業界情報は十分? 同時に、業界や他社の情報を十分に捉えていなかったことも痛感しました。まずは、講義で学んだ各フレームワークを活用し、外部環境と自社内の情報を整理することから始めたいと考えています。その上で、既存の戦略を深く理解し、自組織の今後の方向性を明確に定め、より優位なポジションを確立するための行動に移していくつもりです。

戦略思考入門

整理と分析で磨く戦略の本質

整理・分析の本質は? 差別化は、単に情報をかき集めてアイディアを出すだけではなく、綿密な整理と分析が必要であると以前は考えていたが、その整理や分析が表面的になりがちな点に気づかされた。 VRIOで価値を見極め? VRIO分析を活用する中で、まず、施策が顧客にとって実際に価値を生み出しているか、また他社にはない希少性があるかどうかを検討することが重要である。そして、競合が容易に模倣できるか、自社で持続的に実現可能かといった視点も忘れてはならない。特に、顧客が製品を使うことで解決したい、または満たしたい本質的なニーズに立ち返ることで、従来の業界内の枠を超えた競合分析が必要だと感じた。 戦略見直しの要点は? また、中長期戦略の策定にあたっては、過去にある製品やブランドの発売時の戦略を見直す際に、フレームワークを用いて広い視野で整理することが有効だと実感した。この手法により、導かれる考察が変わり、結果として戦略をより良い形で修正できると考えている。

アカウンティング入門

財務分析で見出す成長戦略の鍵

PLのポイントを押さえるには? PL(損益計算書)の仕組みを理解し、各利益間に注目することで、どの部分に費用がかかっているのかを把握できることがわかりました。粗利を上げるためには、提供する価値を明確にし、それに見合う価格設定が重要であることを理解しました。 財務諸表で何が見える? 自社と競合他社の財務諸表を確認し、どこに費用がかかっているのか、自社と競合との違いを分析するために活用したいと考えています。さらに、異なる業界の会社の財務諸表を通じて、業界ごとの差異を理解することも目指しています。 IR情報で業界特徴を学ぶには? 自社および競合他社のIR情報を確認し、利益構造にどのような違いがあるのかを把握したいと思っています。また、異業種の会社のIR情報も調査し、業界特有の違いについて学んでいきたいです。そのうえで、自社の課題が見つかった場合、なぜそのような状態になっているのか、そしてどのように改善すれば良いのかを考えていきたいと考えています。

データ・アナリティクス入門

幾何平均で拓く新視点の統計術

平均と標準偏差の意味は? これまで平均値と標準偏差をなんとなく使用していましたが、今回の学びを通じて、それぞれの利用目的や強みが明確になりました。特に、幾何平均については、これまで計算式が難しいという理由からあまり触れてこなかったものの、その特徴を理解できたことで、必要に応じて積極的に活用していきたいと感じています。また、標準偏差についても、グラフで見るイメージだけでなく、具体的な数値として求められることを知り、大変驚きました。 業務に活かす意図は? 業務では、マーケティング部門として販売実績の分析や経営層への成長率報告のデータ分析に役立てることができると実感しています。具体的には、各社の売上高を中央値や標準偏差で分析したり、販売実績の成長率に対して幾何平均を用いるなど、状況に応じた情報提示ができるように活用していきたいと考えています。 幾何平均の応用点は? また、幾何平均が適用できる場面について、さらに意見交換を行いたいと思います。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

比較で拓く新たな視点

比較の価値って? 分析の際、最初に比較の視点が重要であると実感しました。私自身、比較に対して苦手意識がありましたが、実務を通して比較分析を実施するうちに、他者の意見が新たな視点を与えてくれることを学び、自分以外の考えを取り入れる意義を改めて認識しました。 情報分析の秘訣は? また、上司から課題解決のための情報分析を依頼されたときのプロセスも振り返りました。まず、分析の目的を明確にし、次に何と比較するかを検討します。データが少ない場合は割合で表し、表を作成した上で適切なグラフによって視覚的に表現します。その結果を客観的に評価し、必要であればさらに深堀りした分析を行うという流れです。 視点の工夫は? 最後の課題では、男女別や地域別といった切り口での分析が有効であると感じました。ただ、これらの視点に気づくまでに時間差が生じてしまいました。あらかじめスムーズにアイデアが浮かぶようになるためのコツがあれば、ぜひ教えていただきたいです。

データ・アナリティクス入門

アウトプットが照らす分析の道

データ収集時の注意点は? データ収集の段階で、最終的なアウトプットのイメージを明確に持つことが非常に大切だと改めて実感しました。演習を通じ、ただ漠然とデータを分析するのではなく、何を理解したいのか、どのような知見が得られるのかを意識しながら分析する必要があると感じています。 仮説の重要性は? これまでは業務上、データを加工して気になる情報が見つかればその伝え方を考えるという流れで進めていたため、分析を行う際には、まず仮説とアウトプットのイメージを持つことが質の向上に大きな差を生むのだと実感しました。 質向上への取り組みは? この経験をもとに、売上の変動分析においても、従来の手当たり次第の手法から脱却し、しっかりとしたアウトプットのイメージを持って取り組んでいきたいと考えています。また、以前「分析がわかりにくい」という指摘を受けたこともあり、優れた分析手法を取り入れることで、さらなる質の向上を目指します。

「情報 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right