データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

戦略思考入門

フレームワークで見える新たな経営視点

Week1の学びは何だった? 改めてWeek1から学んだことを振り返る機会がありました。フレームワークにはさまざまな種類が存在しますが、その活用方法は場面によって異なります。これからも、「自分が明らかにしたいことは何か」「それを明らかにするためにはどのフレームワークが適しているのか」を判断し、定期的に振り返りを行っていきたいと思います。 フレームワークで整理できる? 1つ目の学びは、フレームワークを用いて散乱した情報を整理することです。目的(ゴール)だけを設定しても、戦略をどう立てるべきか、最短経路はどこかを示すのにフレームワークは役立ちます。例えば、3C分析などは、自社にとどまらず、他社や顧客を取り巻く環境を整理するのに有益です。これらの方法は、自分だけでなく関係者も巻き込んで精度を高める必要があります。 差別化はうまくできている? 次に重要なのは、差別化ができているかどうかです。ターゲットとなる顧客像が明確でなければ、自社の強みをどのように活かせるか、また他社に模倣されやすいかどうかの判断が難しくなります。 定量的な判断は可能? また、捨てる基準を定量的に説明できるかも重要です。過去にはざっくりとした工数や手間で取捨選択していましたが、これは良い判断とはいえません。投入時間に対してどれだけ利益が生まれるか、費用対効果を考慮すべきです。また、自分の不要な美学で行っている定常業務を改め、自分自身が行う必要があるかを見直す必要も感じました。 市場原理について理解できる? さらに、市場原理の理解も必要です。例えば、多く発注すれば単価が下がるという表面的理解だけでなく、規模の不経済といった基本的メカニズムも学びました。これにより、施策を行う際の説得材料やリスク管理に大いに役立ちます。 新規・既存事業はどう活かす? これらは新規および既存の事業に広く活用できると感じています。新規事業においては、ゴール設定やターゲットの明確化、他社環境の把握といった具体的な施策の基本設計に役立ちます。そして、既存事業においては、費用対効果の検討や捨てるべき基準を定量的に判断することで、より合理的な経営判断が可能になります。 どのように実行する? 具体的には、新規事業の提案を受けた際には、具体的なゴール設計を自分の言葉で説明できるレベルで共有し、もし詰められていない場合は一緒に策定まで伴走していきます。また、既存事業については、月に一度取捨選択を行い、工数と売上を算出し、割に合わない場合は決断をもって捨てるとともに、空いた工数で何を行うかアクションプランを決定することを心がけています。

クリティカルシンキング入門

ビジネスの障害と繋がりを発見する思考法

考える力を深める方法とは? 自身の思考を広げ、本質的な課題や解決策を導き出すためには、「目的意識」「3つの視」「具体と抽象化の繰り返し」「問い続けること」が重要だと学びました。これらを怠ると、「問題の本質に気付けていない」「狭い範囲の検討に留まり議論のすれ違い・解の見落とし」というビジネスで成果を出す上での大きな障害を放置することになると感じました。 新たな価値を創出するには? これらの要素を使いこなすことで、それまで別の事象としてしか捉えていなかったことの繋がりを発見し、他者が気付かないような価値(ソリューションやビジネスモデル)を創り出すことができると気付きました。特に、「3つの視」についてはこれまでは「2つ上の目線で考える」ことを重視してきましたが、視座の高さだけでなく、視野・視点を意識することでより客観的な視点を得て、論理的な理論構築が可能となると感じました。 情報収集の精度を上げるには? また、自身や自社の専門性の無い分野へのソリューションやビジネスモデルの検討において、まず当該市場の初期調査を実施しソリューション検討に入りますが、得られる情報だけでは適切な市場・顧客セグメント・ターゲティングの検討が十分な精度でできていないと感じています。調査では省庁資料や専門誌からの情報取得、フレームワークを活用した課題整理など、効率的な進め方を意識していますが、後から情報を継ぎ足しで補完することが多々あります。そして、そうして得た情報の中に本来気付くべき課題やソリューション検討のヒントになる情報が隠れていたと後ほど気付くことも多いです。クリティカルシンキング、特に「3つの視」「具体と抽象化の繰り返し」を意識することで、情報を的確に深く調査し、精度の高い解や仮説を導けるようになると感じました。 プレゼンスキルを向上させるには? さらに、役員向けプレゼンを行う際、「3つの視」「具体と抽象化の繰り返し」「問い続けること」を意識しストーリー構築を進めることで、自身の主張を裏付ける根拠の論理性が向上し、論理の飛躍を防止する効果が得られると感じました。 業界分析のアプローチ法は? ソリューション提供やビジネスモデル構築に関わる業界、企業、個人(クラスター)を「3つの視」で捉え直し、「他に対象はないか」「構築した仮説は他の視点・視野・視座から視た際にどうか?それらを考慮し他に検討すべき事項は無いか」などを深掘りする。他に検討すべきことが見つかった際は、具体と抽象の思考でタテ・ヨコ・ナナメの関連事項を洗い出す、というプロセスが重要だと感じました。

リーダーシップ・キャリアビジョン入門

現場で挑むエンパワメント実践

エンパワメントは何が肝心? ■エンパワメント・マネジメントについて エンパワメント・マネジメントは、リーダーシップの技法のひとつです。目標は明示しながらも、実行方法はメンバー自身の判断に任せることで自律性を促進します。また、メンバーが活動しやすい環境を整える支援が重要となります。実行プロセスにおいては権限と責任を譲渡し、育成に努めるエンパワメント型と、すべての命令を管理する命令管理型とがあります。 どう実践すべきか? ■エンパワメントの実践ステップ エンパワメントの実践には、以下のステップがあります。すべてのプロセスでは、双方のコミュニケーションを重ねることが自立を促すために必要です。 ① 目的やビジョンの共有 ② 対象者の把握 ③ 適切な仕事の割り当て ④ コーチングによる動機付け ⑤ 実行支援 注意すべき点は? ■実践時の留意点 ・各メンバーに適した仕事、あるいは不向きな仕事を見極めること ・部下の持つ権限が十分に機能していない状況を避けること ・リスクを想定し、対策を事前に準備しておくこと 現状の課題は? ■直近の業務と発生している課題 私が直近で担当しているシステム開発におけるテストでは、複数のシステム連携テストを実施するため、以下の作業を行っています。 ① システムテストの計画作成 ② テストシナリオの作成 ③ システムテストの実行および推進 しかし、現状ではテスト対象や関係するシステムの内容が十分に共有されていない課題が発生しています。直接の原因として、以下の3点が挙げられます。 ・ドキュメントによる情報共有がなされていない ・情報が日本語で記述されていない ・イメージ図が用いられていない どのように対応? ■対応策と運用方法 対象は課題が発生している各担当者です。これまでは目標は明示し、遂行方法はメンバーの自主判断に任せるエンパワメント・マネジメントで進めていましたが、現状を改善するため命令型に一部切り替え、フォローアップを強化する方針です。 具体的には、発生している各課題に対して、私自身が実際に動いて一つ一つ内容を整理していきます。また、ゴール達成のために必要なタスクをより細かい粒度で言語化し、メンバーとともにタスクを解消していく形で進めます。再度、以下の課題点について検討・改善していきます。 ・ドキュメントでの情報共有の不備 ・日本語での記述不足 ・イメージ図の欠如

クリティカルシンキング入門

課題解決力がアップするクリティカルシンキング実践記

クリティカルシンキングの目的は? クリティカルシンキングに取り組む姿勢として、目的を常に意識することが重要です。何のために考えるのか、その理由を忘れないようにしましょう。また、自分自身の思考の癖を前提として、常に問い続ける姿勢が求められます。 会議や議論での活用法は? クリティカルシンキングとは、物事を適切な方法で適切なレベルまで考えることを指します。これにより、今まで気づかなかった発見や、見落としていた機会や脅威に気づくことが可能になります。さらに、相手の言いたいことや前提を適切に理解し、会議や議論でよりよい意思決定を行えるようになります。説得や交渉、コーチングにも有効です。 視点の切り替えが重要? 重要だと感じたポイントとして、主観と客観、具体と抽象を行き来して考えることが挙げられます。自他の思考の癖を前提に、考えに制限がかかっていないかを意識し、自分の考えを何度も批判することも重要です。また、視点、視座、視野を使い分け、ロジックツリーで情報を整理し、最初に視点を決めてから物事を考えることが推奨されます。 どんな実践的な利用例がある? 実践的な利用例として以下の点が挙げられます。 ①事業部戦略の策定 これまでの狭い視野から脱却し、多角的な戦略や具体的な計画を立てることができます。 ②課題解決 課題の洗い出しや整理、解決手法をクリティカルシンキングを用いることで、優先順位を高く取り組むべき課題や本質的な課題を見つけ、効果的な解決手法を導き出すことができます。 ③部下育成 部下の育成についてもクリティカルシンキングが有用です。必要な要素を洗い出し、具体的なキャリアパスを描くことで、明確かつ効果的な育成が可能となります。 ④会議や議論の場 クリティカルシンキングの考え方を取り入れることで、会議や議論を効率化し、クオリティを向上させることができます。目的の明確化と全員の思考の癖の理解を前提に、アウトプットをカテゴリ分けし整理することで、議論がスムーズに進むでしょう。 全社展開とその目的は? ⑤全社への落とし込み 学んだ知識を全社で共有し運用に乗せることで、組織全体のレベルを引き上げることが可能です。クリティカルシンキングをフォーマット化し、全社に展開することで、統一的な思考法を定着させることが目標です。 このように、クリティカルシンキングは多岐にわたる場面で効果を発揮する重要なスキルです。それを実際の業務や育成、会議に反映させることで組織全体の成長に寄与します。

データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

戦略思考入門

旅行業界を変えるナノ単科活用の秘訣

戦略とは何か? 「戦略」とは、企業や事業が目的を達成するために持続的な競争優位を確立するための構造化されたアクション・プランです。限られた資源(ヒト・モノ・カネ)を活用し、可能な限り最速で目的に到達するための道を描く補助が「フレームワーク」です。各フレームワークにはそれぞれ目的や用途があり、自社のビジネスに関連する情報を多面的に収集し、物事の本質を見極め、全体の整合を取りつつ目標を効果的に達成する方法をシステマチックに考えることが「戦略思考」と言えます。 何を優先するべき? 目標達成においては、「やるべきこと」だけでなく「やらざるべきこと」を判断することも重要です。さらに、他社との差別化を考える際には「実現可能性」と「持続可能性」も考慮する必要があります。 異文化理解の意義は? 私は、平和産業である「旅」を通じて異文化を理解し体験することで、争いの抑制に貢献したいと考えています。これを通じて、世界という壮大な学びの場で、より多くの人が楽しみながら世界を知り、平和について考えるきっかけを提供し続けたいと考えています。 社会貢献と利益の両立は? 現在、私は訪日旅行営業本部に所属しており、オーバーツーリズムや地方創生、震災復興といった持続可能な観光に関わる課題を解決したいと考えています。しかし、会社としては社会貢献だけでなく、売上や送客といった結果も求められます。この両立をどう図るかが課題です。 現状把握と学び方は? そのためには、現状の旅行業界が置かれている状況を理解し、自社がその課題に注力する必要性を分析し、これまで学んだフレームワークを活用して効果的にアプローチする必要があります。そして、周囲を納得させ、共に動いてもらうよう働きかけることが大切です。日々の業務はイレギュラーが多いため、休みの日にまとめて学習を行っています。まずは動画を視聴して全体の流れを把握し、次に動画を繰り返し視聴しながら内容を要約・まとめることで知識を定着させる方法が自分には最適だと感じています。 学びをどう活かす? 以前からGLOBIS学び放題にも加入していましたが、期限や締切がある方がより意欲的に取り組めるため、毎月視聴する動画を計画し、学んだ内容を自社や業界に応用する計画を立てて実践しています。また、すでに策定されている中期経営計画の読み込みと理解も行っています。今後もGLOBIS学び放題の継続と、データ・アナリティクスとアカウンティングのナノ単科の受講を続ける予定です。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

戦略思考入門

社内で即実践できるROI分析と戦略設計の秘訣

ROIの重要性とは? ROI(費用対効果)の考え方について学びました。私たちの社内では、案件ごとの稼働率をPowerBIなどを使って分析していますが、手元での試算も有効だと感じました。特に、自分の目の前の業務に活かすためには、小規模な試算も役立つと実感しました。 「捨てる」決断の基準は? 「捨てる」という決断については、客観的指標に基づいて行うことの重要性を学びました。例えば、ROIに基づく費用対効果が低い案件、取引先の成長率、取引規模、人件費などの数値データをもとに判断する必要があります。勘や経験に頼るのではなく、常に数値を基にした思考が必要だと認識しました。 なぜ本質を問い直すのか? 過去の手順や資料を無意識にコピペして使うのではなく、その本質を見つめ直すことが大切です。なぜこの手順が必要なのか、このデータは何のために用意しているのか、といった本質を問い直しながら作業を遂行することが、自身の作業効率を高め、さらに自身のROIを向上させることに繋がります。 トレードオフで優先すべきは? トレードオフの考え方についても学びました。「コスト・リーダーシップ戦略」か「差別化戦略」を重視するかの意思決定が重要です。バックオフィス業務においても、制度設計の際に費用対効果に注力すべきか、差別化戦略に注力すべきかの二つの視点を比較して戦略を考える機会があると感じました。戦略とは意思決定に基づいた行動計画を立てることですので、優先順位の設定と、個人と組織の視点をすり合わせることが重要です。最終的には、それらの最大化ポイントを見つけ、ブレークスルーとなる施策を検討していきたいと思います。 どのようにイシューを設定する? 作業を開始する前に、まずはイシューの設定を行います。過去の資料はあくまで参考にし、その時々の最適化を意識してアップデートを目指します。 数値で目的を明確にするには? 戦略を立てるためには、経営層とのディスカッションを通じて会社の意思確認を行い、目的を明確に引き出すことが必要です。客観的データに基づく情報を集め、それを元に判断を仰ぎます。感覚に頼らず、数値で具体的に意思を引き出す工夫を心がけます。 トレードオフの価値をどう探る? トレードオフの考え方は、相反する要素を並べることから生まれるのかもしれません。どんな「効用」があるのかという要素を洗い出す作業を今後も行っていきたいと思います。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

「情報 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right