マーケティング入門

マーケティングの基礎を楽しく学ぼう!

マーケティングとは何か? マーケティングとは、物が売れる仕組みを作ることです。顧客志向で物事を考え、販売や顧客のインサイトを深く理解し、売れる方法を考えて顧客満足につなげる手段です。世の中を見渡すと、自動販売機が良い例と言えるでしょう。コーヒーや清涼飲料水、炭酸飲料などをいつでもどこでも手に入れたいという顧客の需要を満たすことができるので、自動販売機は現在の生活に溶け込んでいます。このような例を参考に、尽きることのない需要を見出し、どれだけ便利に提供できるかを学び、仕事に結びつけていきたいと考えています。 バックオフィスの鍵は? バックオフィスの視点では、営業店や本部などの内部の人間が顧客となります。彼らが求めているのは、費用対効果の高いものです。それをどれだけシンプルに活用できる仕組みを作るかが現在の部署の鍵だと思います。そのための方法や手段を学び、仕組み作りに活かしていきたいと考えています。 基礎学習と実践の重要性 まずは、マーケティングの基礎を確りと学び、顧客志向で物事を分析する力をつけたいと思います。そして、現在の課題や問題を顧客目線で見直し、ブラッシュアップしていきます。どのようにすれば売れる仕組みができるのかを意識し、学んだことを同僚と日常的にアウトプットすることで理解を深めていきたいと思います。

アカウンティング入門

販管費が育む顧客満足の秘訣

リスクと魅力は何? みのるさんカフェの事例では、客の回転数が多く、立地にかかる地代が高いなど、固定費や材料費の面でリスクがあると感じられました。しかし、その一方で、顧客が提供される価値に満足し、客単価が上昇。さらに、滞在時間が延びることがフード売上の増加につながり、コーヒー店においてフードが重要な収益源となる可能性を示しています。 顧客信頼はどう育つ? この事例を通して、販管費の使い方が単なるコストではなく、顧客への価値提供や満足度向上につながる戦略的な投資であるという視点を学びました。特に、顧客目線での投資が信頼やリピート購買を促進し、最終的に売上増加に結びついている点が印象的でした。今後、どのような支出が顧客価値に寄与するのかを意識していきたいと思います。 実務分析の秘訣は? 販管費を戦略的に活用するための力を養うには、実際の企業の決算書を定期的に分析し、販管費と売上との関係を考察する習慣が重要だと考えます。また、授業内容を復習しながら、日常生活で広告やサービスの質と価格のバランス、そして費用対効果に注目することで、理解を深めるとともに実践的な視点を養いたいです。さらに、仮想のビジネスプランを作成し、どこに販管費を投入すべきかをシミュレーションすることで、実務に即した洞察を得ることができると感じています。

データ・アナリティクス入門

実践力が輝く!学びの現場改革

3Cの分析方法は? 3Cは、事業環境を多面的に捉えるためのフレームワークです。Customer(市場・顧客)、Competitor(競合)、Company(自社)の3つの視点から状況を分析し、事業戦略を立案する際の参考にします。 4Pで何を判断? 一方、4Pは3Cの自社部分をより詳細に検討するためのツールとなります。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)の4つの要素を軸に、どのようにサービスの良さを顧客に訴求するかを分析するために活用されます。 現場の課題は? 観光客にとっては、免税手続きの所要時間が短い中で対面式のアンケートや、時間を要するインタビューは取り組みにくい方法と言えるでしょう。また、クレームが発生した際には、最低でも1名の通訳が苦情対応のため常駐しなければならず、現場では実質的に人員が減る状況となります。 改善策はどうする? これまでのアンケート調査は一度のみ実施しており、対面で紙に選択肢を記入していただく方法にはお客様に抵抗があると感じました。今後はデジタル形式で「後ほど実施していただいても構いません」と伝え、アンケートに協力していただいた方々には次回利用可能なショッピングクーポンを提供することで、対応の改善を図ろうと考えています。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

データ・アナリティクス入門

データ分析で見る成長のカギ

比較の重要性って何? 分析の本質は比較にあり、効果を測定するためには、「Aがある場合」と「Aがない場合」を比較することが重要です。ただ「Aがある場合」だけを見ても、その効果を正確に測定することはできません。そのため、分析の目的に沿った適切な比較対象を選定し、分析したい要素以外の条件を整えることが必要です。この考え方を「Apple to Apple」と呼びます。 施策効果の見極め方は? 販促施策の効果を分析する際には、イベントやDM、SNSなどさまざまな方法がありますが、以前はアクションがあった顧客の反響のみを分析していました。今後は施策を行っていない期間の販売実績とも比較し、何をもって目標達成とするかを明確にして企画を立案します。データ分析を行う際には、まず分析の目的やゴールを明らかにし、どの情報を比較すればよいかを検討してから分析を進めなければなりません。 条件整理のポイントは? 「Apple to Apple」の原則に従い、分析対象以外の条件が揃っているかを確認することが重要です。施策を進める際には、データを蓄積するためにさまざまな条件を整えられるように企画します。また、エリア別の顧客属性分析を行う際に、どの比較対象が適切であるかについては、部署に持ち帰って相談し、より明確にすることが推奨されます。

戦略思考入門

差別化とVRIO分析で未来を切り拓く

どうして差別化に注目するの? 差別化の概念を新たに理解することができました。これまで、わが社の強みを「売れている商品」や「受け入れられているメンバー」と捉えていましたが、差別化が持続可能かどうか、施策の実現可能性があるのか、そしてみんながそれを実行できるのか、といった視点で考えることの重要性を学びました。 なぜVRIO分析が初めての発見なの? また、VRIO分析についても初めて知りました。自社の組織マネジメントを独立して分析することは新たな視点であり、大変勉強になりました。さらに、顧客視点の大切さを改めて強く感じています。 どのような分析で今後を見直す? 今後は、自社がうまくいっている理由をVRIO分析で分解し、営業の強みが何であるのかを考慮に入れて分析を進めたいと思います。商品、人材、経営を包括的に分析し、顧客が当社に何を求めているかを理解し、自社が今後育成すべき商品や技術、人材を特定していきたいと考えています。 企画立案に合わせて、早速分析を始めたいと思います。特に自社を十分に分析し切れていないことに気づいたので、学んだ5フォースとVRIO分析を活用して、まず自社の強みを把握したいと思います。その上で、人材育成に本当に必要な能力を明確にし、経営層にも迅速に承認が得られる計画を立てたいと考えています。

デザイン思考入門

会話で掘り起こす本音の真実

定性分析の意義は何? 定性分析という言葉は以前から耳にしていましたが、具体的な内容についてはあまり理解していなかったため、普段使っている手法ということもあり、大まかなイメージは持っていました。日常的に顧客と会話する中で、提供しているサービスに対する意見や不満を雑談の中からヒアリングし、複数の顧客の声を集めることで共通の改善ポイントを見つけ出してきました。フレームワーク化はしていなかったため、これを機に試してみることにしました。 顧客の反応はどう? また、ある顧客で認識した課題を、別の顧客にも「こういった課題はありませんか」と確認することがあります。その結果、多くの方から「あ、そうだね」と言われ、潜在的な問題を掘り起こせたような気がする反面、半ば無理やりに認識させたのではないかと感じることもあり、共感フェーズの難しさを改めて実感しました。 対応策は進むか? さらに、特定の条件下にある利用者の特定シチュエーションでの課題に焦点を当てる重要性は理解しているものの、実際にその課題に対して具体的な対応策を講じるまでには至っていません。対象となるケースが想定以上に少ないため、コストメリット的にも実施判断にまで至らないのが現状です。今後は、次のフェーズで小規模なテストなどを通じ、解決策を模索していければと考えています。

データ・アナリティクス入門

知識耕しで発見!新たな仮説の扉

仮説と枠組みはどうなる? 仮説の立て方や具体的なフレームワークについての説明があり、現在取り組んでいる業務とも密接に関係していたため、大変参考になった週でした。 知識はどう耕す? 備忘の意味も含め、仮説構築のためのメモとして、まずは「知識を耕す」ことの重要性が挙げられます。なぜを繰り返し問うこと、別の観点や視点で事象を捉えること、時系列や将来予測を意識すること、そして類似や反対の事象をセットで考えることが効果的だと感じました。 創造的な仮説は? また、ラフな仮説を立てる段階では、常識にとらわれず新しい情報と組み合わせることで、発想を絶やさず創造的な仮説を生み出す姿勢が大切であると理解しました。 仮説の検証はどう? さらに、仮説の検証については、必要な検証の程度を見極め、情報収集と分析を通して仮説に具体性を加え、再構築していくプロセスが重要であると認識しました。 今後の見直しは? 現在、事業計画の策定や顧客に対するプラン作成に活かすため、仮説構築を意識して取り組んでいます。しかし、現状では仮説の立て方が自己流であり、検証も十分ではないと感じています。今後は、前述した「知識を耕す」という視点を基に、数字的根拠をうまく活用した報告や、仮説の肉付け・再構築にも注力していく必要があると実感しています。

戦略思考入門

VRIO分析で見つける新たな視点と価値

VRIO分析で競争優位をどう築く? VRIO分析は、差別化のポイントを見つけるフレームワークとして有効です。この分析は以下の4つの視点から施策を評価します。 - 経済価値(Value):顧客にとって価値があるか。 - 希少性(Rarity):その要素がどれだけ希少か。 - 模倣困難性(Imitability):模倣するためのコストが高いか。 - 組織(Organization):組織体制が適切に整備されているか。 経済価値を再考する方法 自社が保有する優れた経営資源を明確にすると、競争優位性を構築できる組み合わせを考えることが重要だと学びました。 経済価値について考えることで、私は自身の業務に対して新たな視点を持つことができました。課題に集中するあまり、本当に求められているものを見落としがちになります。これを機に、顧客のニーズをより把握することを再検討したいと考えています。具体的には、どのようなコンテンツが求められているかアンケートを実施し、施策の妥当性を確認します。 SNS活用とアンケートの重要性 広報活動においては、今後SNSなどを活用してアンケートをとり、求められているコンテンツが何かを明らかにします。得た回答から経済価値を見つけ出し、実現可能なものを具体化して広報活動に活かしていく予定です。

データ・アナリティクス入門

論理ツリーで磨く実践スキル

なぜ手法を再確認? 今回の学習では、問題解決のステップ(What/Where/Why/How)に沿って、各段階でどのようなアクションを取るべきかを再確認することができました。普段の業務でも同様の手法を取り入れていますが、今回の具体例を通じて現状の見直しに役立つと感じました。 適切な分解は何故? また、ロジックツリーに取り組む際、すべての要素を漏れなくダブりなく洗い出そうとするあまり、時間をかけすぎてしまう傾向があることを改めて実感しました。特に末端の階層にこだわりすぎず、適切なレベルで分解するというアドバイスは大きな気づきとなりました。 現業務の解析はどう? 現在の業務では、顧客へのサービス提供に際してコスト試算や自部署の予算計画、実績の分析を行っています。例えば、コスト試算においては提供価格、原価、販管費といった大枠から、さらに細かい費目に分解して検証していますが、構成要素をツリー状に分解するという手法は初めての体験でした。今回の学びを現業務にも活かせると考えています。 次の改善策は何? 今後は、自部署における予算計画、実績把握、コスト試算のプロセスに、ツリー状の分析手法を取り入れてみます。一度試してみて、試算の妥当性や課題の特定にどのような効果があるかを検証していきたいと思います。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

「顧客 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right