戦略思考入門

価値と競争優位性を磨く学びの旅

価値を問い続ける姿勢を持つには? VARIO分析において、価値提供を追求する姿勢は重要です。顧客が求める価値や希少性のある資源を常に問い続けることが大切です。また、模倣可能性を考慮し、外部環境が変化した際には模倣される可能性を意識する必要があります。ただし、経営資源の分析にとどまらず、それをどう活用するかという視点も持つべきです。 ポーターの戦略がもたらす実践的ヒントとは? ポーターのコストプライシング戦略、差別化戦略、集中戦略は、自社サービスを向上させるために非常に実践的なヒントをもたらしました。 VRIO分析を深める方法とは? 総評として、VRIO分析の重要性をしっかりと理解し、持続可能な競争優位性の要素を意識している点は高く評価されます。今後は、具体的な業界や企業の例を取り入れることで、さらに理解を深めることができるでしょう。 新たな発見をするために身近な企業を分析するには? さらに、VRIO分析を使って身近な企業を分析することで、新たな発見があるかもしれません。また、ポーターの3つの基本戦略を自社サービスに具体的に適用する方法を考えることが求められます。 学びを具体的事例にどう結びつける? 最後に、学んだことを具体的な事例に適用し、実践的な理解を深められるよう努めることが大切です。日々の取り組みを通じて、引き続き頑張りましょう。

クリティカルシンキング入門

イシューを見抜く成長の軌跡

どうやってイシューを特定する? 進め方としては、まず答えを出すべき問い、すなわちイシューを明確に特定します。その後、論理の枠組みを考え、主張を適切な根拠で支えるという基本の流れを踏むことが重要です。作業を進める中で、イシューを常に意識しながら進めるべきであり、過去にはイシューから逸脱したまま次の作業に移ってしまった経験があり、今後はその点の改善が求められます。 なぜ顧客評価に課題が? また、顧客評価で問題が生じた場合や戦略がうまくいかない状況では、単なる対症療法にとどまらず、根本的な問題が何であるかを特定し、メンバー間で共有することが必要です。特に、エンジニアの方々と仕事をする際には、視点が異なることが多いため、まずは共通してイシューを明確にし、現在の状況と今後の方向性をしっかり合わせることが大切だと感じました。 どうやって情報整理をする? さらに、各顧客ごとにイシューを特定し、現状理解のためにMECEやデータ分析を実施すること、そして顧客との面談前や会議での参加者間のゴール設定が求められます。資料作成の際は、まずデータを整理し、その後報告資料の構成を考え、スライドごとのメッセージを作成していくという流れを守り、順番を変えないように進めることが重要です。会議中もイシューから逸脱しない進行を意識することで、解決策へと着実に導くことができると感じました。

データ・アナリティクス入門

仮説と仲間が拓く未来

どうやって仮説を立てる? データ分析を始める際、いつもありがちな仮説で立ち止まっていた自分に対し、3Cや4Pといったフレームワークを活用して思考を整理し、仮説を立てる方法を学びました。仮説は単に立てるだけではなく、その検証も極めて重要であり、さらに施策を講じる際には顧客目線が不可欠であることを改めて認識しました。 意見交換は必要? また、仮説やアイディア出しの過程で、当たり障りのない意見だけではなく、否定的な意見や斬新な発想を取り入れることも必要だと感じました。一人の意見では偏りが生じやすいため、同じ目的に向かって柔軟な視点を持つ仲間との意見交換が、より良い施策を生み出す鍵になると実感しました。 基本指標をどう見る? さらに、Webマーケティングの基本的な指標であるPVやUUなどの知識は、今後欠かせない領域であると認識し、引き続きツールなどを活用した学習を進めていきたいと思います。過去にカスタマージャーニーマップを作成した経験から、自分とは異なる属性の視点を取り入れる重要性を痛感し、今後はより多様なシチュエーションを考慮して視野を広げる努力を続けたいと考えています。 集計分析で何が見える? また、クロス集計分析の手法は、現在携わっているアンケート業務において大いに役立つと感じ、今後も定量的な面から分析を深堀していくつもりです。

マーケティング入門

ヒット商品の誕生は計画的に可能!

ヒット商品は計画的に? 今週の事例から、ヒット商品は計画的に生まれるものだと感じました。Z世代のターゲットユーザーと化粧品市場の売り場を詳細に分析した結果、商品のコンセプトが導き出され、ヒット商品の誕生が可能になるというロジックが見えました。 値上げ成功のための新視点とは? また、「どうすれば値上げができるか」についても、新しい視点を得ることができました。特にユニークな差別化や顧客体験の差別化が、値上げの達成に役立つという点は重要です。原料高騰の背景も考慮し、自社の強みを整理して独自の差別化を図り、顧客に特別な体験を提供することで、商品提案につなげる必要があります。 ブレストで強みを具体化するには? 研究所のメンバーと共に、自社の強みや市場への戦略についてブレストを行い、アイディアを具体化していきます。さらに、顧客にユニークな差別化や購入体験を感じてもらうためには、必要とされる新技術についても意見を出し合い、最終的には研究テーマとしてブラッシュアップしていく予定です。 価値を更新していけるか? 同じ体験を繰り返すことで価値が減衰すると学びましたので、自社製品についても常に価値を更新していけるかどうか、一度見直してみたいと思います。この事例に限らず、他社のヒット事例も3C分析などを通じてロジックを調べ、学びを得ていきたいと考えています。

戦略思考入門

シンプル分析で見える未来

基本の枠組みはどう? 戦略的に考える際、これまで想像していたような高度な分析やフレームワークの活用ではなく、まずはオーソドックスなフレームワークを適切に使いこなすことが大切であると学びました。それぞれのフレームワークで求められる分析の視点や、全体感を持ち偏りなく分析する点、各要素の整合性を保ちながら大胆に仕分けを行う意識が必要だと実感しています。 今後の事業戦略はどう? 自社の中期的な事業方向性を検討するうえでも、この考え方を活用したいと考えています。これまでは「顧客が~だから」「競合が~だから」「自社の強みは~」という議論のもとで方針や取り組みを進めてきましたが、最近のケーススタディを通じて、競合環境が見えづらい業界ならではの難しさを実感することとなりました。今後は、メンバーと議論を重ねながら、各種フレームワークを活用して事業方向性を決定していくつもりです。 3C分析、進め方はどう? まずは3C分析を丁寧に実施します。本講座で学んだように、市場(マクロ)と顧客(ミクロ)をそれぞれ分析し、誰が競合なのかを明確にする点に特に注力したいと思います。自らたたき台を作成したうえで、チーム内で意見を交換し、分析内容を深める予定です。また、分析を進める中で顧客や自社に関するデータが不足する可能性があるため、データ蓄積の仕組みの検討も並行して進める意向です。

マーケティング入門

受講生が感じた顧客満足の魔法

マーケティングって何? 今回の学習を通じ、マーケティングという言葉は人によって捉え方に幅があり、その広がりを意識することの重要性を実感しました。マーケティングの基本的なサイクルとして、自社商品の魅力を正しく伝え、顧客にその魅力を感じてもらうことで行動変容(購入)に導くプロセスがあると理解しました。「顧客に買ってもらえるしくみ」というグロービスの定義は、顧客の立場に立ったマーケティングの考え方を示しており、非常に印象深く感じました。 セリングとの違いは? また、マーケティングとセリングの違いについて学びました。セリングは「売りたい商品」からスタートし、売上数量という成果に結びつくのに対し、マーケティングは「市場や顧客のニーズ」から出発し、顧客満足に基づく利益の創出を目指すという点が大きな違いです。この違いを理解することにより、常に顧客志向であることの重要性が一層明確になりました。 どうやって実践する? 今後は、販促施策の企画や検証の際にも顧客視点を軸に、顧客に選ばれる仕組みを意識していきたいと思います。また、アンケート結果を丁寧に分析し、その結果をもとにサービスやイベント運営に反映することで、より良い顧客体験の提供を目指します。さらに、日々の業務において住宅設備や住まいに関するトレンド情報も意識的にキャッチし、適切に活用していくことを心がけています。

データ・アナリティクス入門

パッと見て本文を読みたくなるようなタイトル: 仮説思考で市場の変化に対応する方法

仮説の網羅性を高めるには? 仮説を立てることや仮説を立てる際に用いる視点について学びました。課題に取り組んだときは、思いつきで同じような切り口でしか仮説を立てられませんでしたが、3Cや4P分析を用いることで仮説の網羅性を高めることができると理解しました。思考が凝り固まり、仮説を立てる際に一つの視点に固執してしまうことがありましたが、フレームワークを用いることで柔軟な思考ができるようになりたいと感じます。 採用市場の変化にどう対応する? 急速に変化する採用市場では、「昨年はこのような状況だったのに、今年は全く異なる」という場面が多々あります。仕事をする上で常に仮説思考を持つことで、次にどのような変化が起こるかを予測し、迅速に行動することができると感じました。市場の変化(求職者の志向性、行動、価値観の変容など)を常に仮説に基づいて理解し、顧客に良いサービスを提供できるように努めたいです。 変化に敏感なマーケティングとは? 市場の変化を敏感に感じ取り、対応する学生や求職者に対してマーケティングを行うために、自分から積極的に情報を取りに行くことが重要です。顧客企業の「競合」「市場」「自社」を考慮し、求職者や学生にとってのロイヤリティを明確にし、適切な採用戦略を考える必要があります。また、常に「なぜ変化が起きているのか」を思考し続けることが大切だと感じます。

マーケティング入門

顧客視点で潜在ニーズを見つける旅

顧客の潜在ニーズは? 今回、マーケティングの事例を通じて、顧客の視点からニーズを考える重要性を再確認しました。動画講習でも「顧客ニーズの深掘り」について学びましたが、顧客がまだ気づいていない潜在ニーズを探る姿勢が不可欠だと感じました。また、競合に勝つためには、自社の強みを理解し、それを応用する力や発想の転換も求められます。潜在ニーズの発掘には近道がありませんので、日々目にする商品やサービスがどのようなニーズを捉えているのかを考察していきたいと思います。 顧客視点をどう捉える? これまで自社の提供する製品やサービスについては、成熟市場での競合対策ばかりを考えてきました。これからはゼロベースで視点を変え、競合対策から顧客ニーズへの対応に目を向ける必要があります。特にIT分野では、企業のデジタル化に伴い商品やサービスが提供されるケースが多く、既存のニーズだけでなく、顧客が気づいていない潜在ニーズにも焦点を当てたマーケティングを展開していくつもりです。 ヒアリングで何を探る? 顧客の真のニーズを発掘するために、実際の活動を開始します。BtoB市場において、数社の顧客を選定し、デジタル化についてのヒアリングを行います。その際には、深掘りの質問ができるよう、顧客のホームページや業界情報をもとに3C分析を行います。11月中に3社を目標にヒアリングを実施します。

アカウンティング入門

会計で発見!企業の魅力

企業の収益と価値は? 知っている企業の主な収益源や提供価値、顧客像を複数人でディスカッションする中で、その企業や業界全体の特徴を意識することができました。特に、人件費がどのように企業の提供価値に影響を与え、損益計算書上で売上原価と販管費のどちらに計上されるかが異なる点は、とても興味深かったです。 業務と会計のつながりは? また、私自身が処理している業務が、最終的には会計の財務諸表の形成につながっていることを実感しました。正確な財務諸表を作成するためには、売上や原価の種別を正しく理解する必要があると感じています。これまで、社内ルールに沿って業務を進めていましたが、今後のビジネス環境の変化に対応するためにも、今回学んだ知識を基に経理や財務の担当者と相談しながら業務を進めていくことが不可欠だと考えています。そのため、自社のビジネスに対する理解と会計の基礎知識を一層深めていきたいと思います。 財務で業界を読む? さらに、自社の財務諸表を読みながら業界と自社の特徴を把握する重要性を改めて認識しました。日常の業務で財務諸表を直接扱う機会はあまりありませんが、今回の講義を通して、身近な企業の分析を習慣にすることが大切だと感じました。習得した知識を言語化するプロセスを繰り返すことで理解が深まり、この方法は新人教育にも活かしていけると確信しています。

データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

「顧客 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right