データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

アカウンティング入門

数字で読み解く戦略のヒミツ

財務諸表をどう学んだ? 今回の講義では、PL、BS、CSといった財務諸表の種類や、その各諸表が数値に基づく定量分析を通じて企業の現状把握や健全性の評価にどのように役立つかについて深く学びました。数値情報に基づく客観的な判断が、企業活動の全体像を理解するうえで不可欠であると実感しました。 戦略策定の視点は? 特に、事業戦略や技術戦略の策定において、企業の現状を俯瞰的かつ数値的に捉えることの重要性が明確でした。講義では、企業全体だけでなく、組織内の各部門や他分野の企業と比較しながら、PL・BS・CSの各項目が持つ意味合いや特徴を分析する手法についてディスカッションしました。その結果、各項目が企業の本質や方向性を示す具体的な指標となる点が理解できました。 多角的アプローチは? また、ディスカッションでは複数の仮説を立て、各仮説に基づいて実際の財務分析を行うプロセスを通じ、分析方法の幅を広げることができました。これにより、従来の単一の視点に加えて、多角的なアプローチが戦略策定に有効であるという認識が深まりました。 今後の分析をどう? 今後は、今回の学びを活かして、企業や組織の財務状況を定量的に評価し、改善点や新たな戦略の方向性を具体的に示す分析を実践していきたいと考えています。

デザイン思考入門

言語化で磨かれる提案の極意

課題を明確にできた? IRコンサルティング業務では、これまでお客様の課題を明確な言葉で定義していなかったため、今回学んだ手法を通じて、お客様の状況や課題を整理できたと感じています。また、カスタマージャーニーはBtoB事業においても十分に活用できると実感しており、早速試してみたいと思います。 実践はどう進む? 実践については、4週目以降に取り組む予定です。お客様の課題を言語化することで、認識のずれが減少し、提案の精度が向上すると考えています。同時に、BtoBにカスタマージャーニーを適用することで、意思決定プロセスが可視化され、より効果的なコンサルティングが期待できると感じました。 分析法は何が鍵? また、以下の点にも留意しながら進めます。まず、定性分析は仮説の立案を目的とし、定量分析はその仮説の検証を目的とします。定性分析では、コーディングによってデータを1次コードから3次コードへと分類し、体系的に整理します。さらに、ユーザーの暗黙知を把握するためには観察を、形式知を引き出すためにはインタビューを実施し、それぞれを適切に使い分けることが重要です。最後に、ペルソナを具体的に設定し、カスタマージャーニーを描くことで、実践的な分析を目指していきます。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

戦略思考入門

戦略的選択で未来を創る

ゴールはどう決める? 戦略的思考という言葉を明確に言語化できてはいなかったものの、学習を通してその理解が深まりました。特に、「やるべきこと」と「やらなくてもよいこと」を選別する重要性を実感しています。問題が山積している状況ではあれもこれも手をつけたくなりますが、まずはゴールを明確に設定し、現時点で本当に必要なものを絞り込むことが効果的だと感じました。 事業課題はどう整理? また、所属する事業全体の課題設定と対策立案においても、この戦略的思考が大いに役立つと考えています。事業全体になると対象も広がり、解決すべき課題が多いため、あえてゴールを決め、取るべき行動を選別することで、最短かつ最速で理想の事業状態に近づけると期待しています。今後は、担当業務の範囲を超えた広い視野で戦略思考をどんどん活用していきたいと思います。 未来設計はどう進む? さらに、事業全体の課題と対策を自分なりに整理し、上司と意見交換を行いたいと考えています。そのため、事業の今後3年の理想像を、定量的・定性的な面から明確にし、現状とのギャップをもとに課題を洗い出す予定です。学んださまざまなフレームワークや手法を、実際の業務に積極的に活かしていきたいと思います。

データ・アナリティクス入門

目的明確!多角的視点で読み解く

分析の目的は何? 分析とは、比較によって本質を浮き彫りにする作業であると再認識しました。分析の目的を明確にし、適切な比較対象を選ぶことが、納得感のある結果を導くための基本であると感じています。また、目的に応じた情報の見せ方が存在するという理解も深まりました。 情報整理の必要性は? ダイバーシティ推進の担当として、社内の属性割合や勤務実態の定量データ、そしてアンケート結果といった定性データを扱う機会が多い中で、まずは情報の用途や目的を明確にすることの重要性を改めて認識しました。必要な情報をより深く掘り下げ、検討していくことが今後の課題です。 多角的視点はどう? また、自分だけの視点に偏らず、他者の意見を取り入れることで、多角的な視点から情報を集約したいと考えています。こうすることで、より客観性の高い分析が可能になると実感しています。 透明な分析方法は? 一方で、分析の目的に応じた仮説設定が、恣意的に都合の良い情報操作につながるのではないかという懸念も感じています。今後の学びを通じて、この疑問に対する気づきを得るとともに、より透明性のある分析手法の習得を目指していきたいと思います。

データ・アナリティクス入門

数字を紡ぐ、現場からのヒント

どう分析すれば良い? 「やみくもに分析しない」という言葉を目にし、データ分析の奥深さを再認識しました。現在、チームで検討中の施策に対し、まずは営業担当へのインタビューを実施し、そこで多くの意見が寄せられた内容については、全体を対象にアンケートを行う計画です。 数字の根拠は何故? 数字の根拠をもとにストーリーを作り上げる手法は、相手に響く説得力を持たせる上で非常に重要であると改めて感じました。この考えを念頭に置きながら、実務におけるデータ分析のアプローチをさらに熟考する機会となりました。Week6で総復習を予定していた中で、新たな気づきを得ることができたのは大きな収穫でした。 実務データの秘訣? また、AIコーチングからは、実務における定性データ(インタビューやアンケート)と定量データとの整合性や、数字の根拠から効果的なストーリーを作るための仮説検証のプロセスについての問いをいただきました。まずは、アンケートを通じて定量データを効率よく収集できる仕組み作りに取り組むとともに、過去から蓄積している定量データの中から、今回の営業担当へのアンケートに活用できるものがないかを洗い出してみようと思います。

デザイン思考入門

小さな会話が未来を変える

暗黙知が示す問題は? 既存業務では、表面的には問題が見受けられなくても、暗黙知により不便さが隠れている可能性があります。そのため、ユーザーが大雑把に抱える課題を観察しつつ、定性分析を使って解決策を見出す必要があると感じています。まずは、現場をしっかり確認し、困りごとを持つ人がいないか探すことを心がけたいと思います。 仮説は有効か? また、自分自身が業務に追われ、常に周囲を見る余裕がなかったことも実感しています。そのため、あらかじめある程度の仮説を立てることが重要だと考えています。チームメンバーからは、偶然の会話の中で困っている点が見つかる場合があると聞いており、日常的にいろいろな人と話をするよう努めるつもりです。 分析手法はどう変わる? 今回の学びでは、暗黙知と定量分析の双方が大きなポイントとなりました。さらに、コーティングの手法を習得できたことで、これからはアンケートやインタビューで得た情報をコーティングする習慣を身につけたいと考えています。現在は生成AIの活用により、簡単にコーティングが可能となっているため、その点を意識しながらアンケート結果の分析にも取り組んでいきたいと思います。

マーケティング入門

マーケティングで顧客満足を追求する旅

マーケティングの本質とは? マーケティングについて考えると、以前よりも広い意味を持つように感じていますが、本質的な顧客志向や顧客満足という点は、時代が変わっても変わらないと捉えています。マーケティングを考える際には、常にこれを念頭に置いていきたいです。 顧客満足を追求するには? 私の勤める会社も、昔から顧客を大切にすることを最重要視しています。ただし、接客だけでなく、より本質的なお客様の満足やインサイトを意識し、提案の際に活かしていくことが求められています。そのためには、素晴らしい商品を作ることよりも、顧客が本当に求めている商品やサービスを提供できるように、分析力を身につけ、高い視点から提案できるようになっていく必要があります。 定量化できない満足度への挑戦 顧客理解を深めるための方法やその数値化を手法として習得することに努めるつもりです。また、定量化が難しいイメージや口コミの分野で、納得感の持てる提案を行うためには、常に批判的思考を意識するようにしたいです。そのため、他者に提案資料の確認をお願いしたり、フィードバックや顧客の声を積極的に聞くこと、確認する習慣をつけることが大切だと考えています。

データ・アナリティクス入門

ロジックツリーで解明する挑戦

問題解決の第一歩は? 問題解決のプロセスは、「問題の明確化、問題の特定、分析、立案」の4つのステップで進めることが基本です。まず、あるべき姿と現状とのギャップを整理し、定量的な指標で表現することで、問題の本質を明らかにします。 ロジックツリーの意味は? 次に、ロジックツリーを用いて問題を層別分解と変数分解の視点から特定します。この手法は、抜け漏れなく全体を捉えるために有効であり、MECEの考え方を取り入れることで、効率的な分析が可能になります。 データ分析の見直しは? 実際の業務では、ある営業活動の最適化に向けた分析で、手元のデータをもとに検証を試みたものの、結論に至る前に、まずロジックツリーによる要素の分解と、分析の切り口についての再検討が必要だと感じました。また、参加しているプロジェクト全体のパフォーマンス改善にも、この手法を活用できると考えております。 改善策の判断は? ただし、分析においては良い切り口と悪い切り口の判断が難しいという現実も感じました。今後は、これらの手法を実践しながら、より効果的な分析の切り口を見極め、改善策を立案していくことが重要だと実感しています。

リーダーシップ・キャリアビジョン入門

心動かす声かけの秘密

エンパワメントとは何? エンパワメントは、組織の構成員が自発的に行動し目標達成に導くためのリーダーシップの一手法です。命令管理型と比べると、部下の育成につながり、また権限の委譲を通して柔軟な対応がしやすくなる点が特徴です。 目標設定のポイントは? この効果を発揮させるためには、適切な目標設定の支援が重要です。具体的には、目標が6W1Hに基づいて整理され、定量的かつ具体的な内容になっているかを確認する必要があります。また、相手の能力、性格、価値観、業務状況などをよく見極め、自分自身に余裕を持つ姿勢が求められます。 内発的動機はどう引く? 会話型AI演習を通じて、仕事を依頼する際に相手の内発的動機づけが十分に引き出せていない点が浮き彫りになりました。丸投げのような依頼や、答えを手取り足取り説明する方法ではなく、目的や目標を共有したうえで計画策定から任せるというエンパワメントの方法を実践していきたいと感じています。 効果的な声掛けは? 私自身も、どのような声掛けが相手の内発的動機づけに効果的なのか悩んでいます。皆さんが実践されている方法があれば、ぜひ教えていただきたいです。
AIコーチング導線バナー

「定量 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right