デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

戦略思考入門

データが照らす捨てる勇気

なぜ実践が苦手? この講座では「戦略における捨てるを身につける」という内容が特に印象に残りました。以前からその考え方に触れていたものの、講座を通じて実際の場面でこの手法を適用する必要性を改めて実感し、自分自身がその実践を苦手だと感じていた理由にも気づかされました。 批判とデータの意義は? 「捨てる」という行動は周囲からの批判を恐れるケースが多く、自分がこれまで培ってきたものを変えるリスクと捉え、避けたくなる部分があると感じていました。しかし、グループディスカッションでは「捨てる」の代わりに、定量的なデータに基づいて選択するというアプローチが紹介され、トレードオフの視点を取り入れることで、これまでの取り組みを付け加える形で活かす方法もあるのではないかと学ぶことができました。 職場での製品挑戦は? 自身の職場では、従来の製品とは異なる新たな製品開発が求められており、「新しいことを行う=変化する」がしばしば批判の対象となる状況があります。そこで、まずは客観的なデータに基づいた判断が重要だと感じています。今後は、常にデータで分析できる体制を整え、メンバーにその意識を共有して、定量的な視点から取捨選択を行いながら業務を進めていきたいと思います。 連携の必要性は何? 仕事は一人で完結するものではないため、日常的なコミュニケーションの重要性を実感しています。皆さんも、周囲との連携を図るために日頃からどのような工夫をされているのか、ぜひ教えていただきたいです。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

クリティカルシンキング入門

実践で磨く分解の極意

全体像はどう把握? 本講座では、全体をしっかり定義した上で作業を進める重要性を実感しました。まず全体像を捉えることで、分解の作業がスムーズになり、全体に漏れがなく整然とした分析が可能だと感じました。 MECEは何を意味? また、分け方においてはMECE(抜けや重複がない)を常に意識することが大切だと学びました。例えば、単に「若者」や「リピーター」といった大雑把なカテゴリーで分類してしまうと、定義が曖昧になり、漏れやダブりが発生する可能性があるため、年齢や来店頻度など定量的な指標を用いることが有効です。 複数切り口は有効? さらに、仮説を持ちながら複数の切り口でデータを分類する手法には大きな意義を感じました。年代を10代ごとに分ける方法や、学歴など別の視点で区切る方法など、異なるアプローチを試すことで、より実態に即した傾向を掴むことができると感じました。 視覚チェックで見える? 加えて、図を描くなど視覚的な手段を用いてチェックすることで、直感だけでは気付けなかった課題を明確にできる点にも非常に参考になりました。最終的には、分けた後に「本当にそうか?」と問い直すプロセスが、より深い理解と洗練された分析に結びつくと実感しています。 実践から何を得る? 最後に、考える前にまず実際に分けてみることの大切さを学びました。実践を通じて自分自身の仮説を検証し、新たな視点を得るプロセスは、今後の分析活動に大いに役立つと感じています。

データ・アナリティクス入門

問題解決の鍵:ギャップを見極めるポイント

問題解決の基本ステップをどう活用する? 問題解決について、「What・Where・Why・How」の段階があることを学びました。これらの段階は場合によっては行き来しながら課題の特定を進めるために用いられます。 定量的なギャップ分析を習慣化すべき? 問題解決において、定量的なギャップを要素分解し、影響度の高い変数を特定する手法は、どのような案件にも通じるため、ぜひ習慣化していきたいと感じました。また、MECE(Mutually Exclusive, Collectively Exhaustive)に分解するためのフレームワークについても、既存のものを学ぶ必要があると考えています。 部門間の合意形成はどう進める? 様々な部門の相談案件に対応する際には、まずどこにギャップがあるのかを明確にし、相手の合意を得たうえで進めることが重要です。そして、目の前の依頼内容の解決にとどまらず、その依頼が本質的な事業課題を要素分解した際にどれほどの影響度を持つのかを冷静に判断し、本当に解くべき課題の探索にも応用することが必要です。 「What」から考え始める理由とは? 現状対応中の案件や新規案件に取り組む際には、「How」から入らず、まず立ち止まって「What」からステップを踏んで考えることが求められます。また、あるべき姿と現状とのギャップについては、依頼元としっかりとすり合わせ、共通認識のもとで仕事を進めることが大切だと感じました。

戦略思考入門

リソース配分の悩みと振り返りの重要性

業務効率化はどう進める? 業務の効率化を考える際、メリットの少ない工程を排除したり、手作業を自動化することは比較的容易である。実際にこれまで幾度となく実践してきた経験がある。しかし、限られたリソースで重要度が拮抗している2つの戦略や業務のうち、どちらかを選ぶ場面では、それほど簡単とは言えない。 選択サイクルの重要性とは? それぞれの戦略や業務にかかるコストと得られる効果(売上や時間短縮)をできる限り定量化して判断するのが一般的だ。しかし、選ばなかった方が後に良い選択だったのではないかという懸念は拭えない。そのため、「選択」は一度きりの行為ではなく、実行後に関係者で振り返り、次に繋げていくサイクルが重要であると感じた。 今後の人事戦略の考え方 次期中期経営計画における人事戦略を立案する際、以下の3つのポイントを念頭に置いて、チームでこれまでの活動を振り返り、今後の戦略やアクションの取捨選択を行いたい。 1. **捨てる方が応募者のメリットになること** - 応募者の立場で再考し、他社の手法なども参考にする。 2. **惰性に流されないこと** - 従来のやり方や慣例を疑い、無駄の排除や効率化、別のアプローチの検討を行う。 3. **餅は餅屋に任せること** - 分業化を検討し、社内での分業化や外部委託、もしくは専門家の意見を取り入れる。 これらの観点を基に、効果的な戦略の取捨選択を進めていきたい。

マーケティング入門

顧客の声が導く業務革新

マーケティングの本質は? 今回の講座では、マーケティングの基本要素である「何を売るか」「誰に売るか」「どう魅せるか」を体系的に理解できました。単なる商品提供ではなく、顧客の潜在ニーズやペインポイントを掘り起こし、体験価値を創出するプロセスであることを再認識しました。行動観察、デプスインタビュー、STP分析などの手法を学び、差別化戦略やイノベーション普及の要件、さらには内部顧客視点の重要性にも気づくことができました。 バックオフィスの変革は? また、自身のバックオフィス業務において、従来の補助作業から脱却し、営業店や社内を「顧客」として捉え、価値提供に取り組む必要性を実感しました。業務プロセスを「スピード×正確性」や「コスト削減×利便性」といった複数の軸で再設計し、数値や具体例を用いて価値を明確に伝えることが求められます。この取り組みにより、内部顧客の安心感や満足度が向上し、全社的な競争力強化にも寄与することが期待されます。 業務改善の策は? 今後は、まず日々の業務終了後の振り返りや小規模なPDCAサイクルの実施に取り組み、データ分析を通じて業務効率やペインポイントを定量的に把握していきます。さらに、マーケティングの視点を取り入れたセグメンテーションやポジショニングの再検討、具体的な業務プロセスの改善策を検討し実行する予定です。同僚とのディスカッションやフィードバックも積極的に活用し、持続的な改善と成長を目指していきます。

マーケティング入門

行動観察が拓く顧客の真実

成功事例は何を示す? 具体例をもとに、成功事例を言葉にしてアウトプットすることで、普段無意識に行っていた行動を見直す機会になりました。特に、ペインポイントの解決を通じたニーズの掘り下げは、当たり前と感じていたものの、改めて顧客を意識する際の大切な指針となりました。また、ニーズとウォンツの違いを明確にすることが、今後の商品開発に役立つと感じています。 業界の違いは何か? エンタメ業界では、ペインポイントを改善する形の商品が少ないため、これを商品企画の起点とする応用は限定的かもしれません。しかし、顧客に情報を届ける段階では、意識して行動することで、これまでとは異なる視点が得られると実感しました。普段、商品が購買される様子を店頭で観察していましたが、最近は業務外の時間に同僚に観察を依頼することが難しく、躊躇してしまうこともありました。マーケティング手法として行動観察は有用であり、自ら観察することで得られる情報も多いですが、主観に偏りがちであるため、リサーチャーなどを活用して定量的に観察することで、より豊富な情報が得られると感じました。 改善点は見えている? まずは、既存商品の開発プロセスで実施してきた取り組みを改めて整理し、うまくいった点と改善の余地がある点を洗い出していきたいと思います。無意識の行動を意識的に切り替えることで、これまで以上に踏み込んだ観察が可能になり、より効果的な商品アウトプットが期待できると確信しています。

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

「定量 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right