データ・アナリティクス入門

データ分析で意思決定を劇的に改善!

データ分析の重要性は? 「データ分析は意思決定の手段であり、意思決定を効率的に実現するための重要な用途である」と改めて認識しました。特に「整理」し、「比較対象を具体的に」することの重要性を学びました。ものごとを「具体的に」し、「はっきりさせる」ことで、より良い意思決定に役立てることができます。このプロセスを通じて、各要素の性質や構造を細かい点まで明確にすることが肝要です。 目的を持って分析を始めるには? 基本は「目的をもって分析をする」ことです。データから得られる知見があるため、目的を明確にせずデータを加工し始めてしまうことがありましたが、この点は意識して改善していきたいと思います。 BPRを進める秘訣とは? また、BPR(業務プロセス再構築)を進めるには、関係各所のコンセンサスが重要です。関係者が納得し、了承を得られるような説明が重要であり、定量的なデータから重要要素を可視化し、客観的な根拠を元に合意形成までのプロセスを改善することが求められます。 新たな視点を持つために必要なことは? 学んだ内容をもとに実務で実践し、どのような分析・資料が効果的であるかを把握し、習得していきたいと思います。また、自分自身の考え方の癖や偏りを矯正し、柔軟な視点を持てるようにするために、グループディスカッションを通して多くの視点や考え方を吸収していきたいです。

クリティカルシンキング入門

数字の魔法:分解から見える新世界

数字をどう分解する? 数字を分解することで、新たに見えてくるものがある。しかし、どのようにその数字を分解するかによって、見える内容が大きく変わるため、その切り口が重要である。分解のパターンはすぐに思い浮かぶものではないので、日々数字に慣れ親しむことが必要だと感じた。さらに、加工や分け方を考える際には、ある結果が出るだろうといったバイアスを自覚し、数字を見る姿勢を持つことが大切だと考える。また、数値やグラフの見せ方に注意を払い、一旦落ち着いて数字を疑う必要がある。一方で、受け取る側はそのままを信じてしまいがちである。 データはどう精査する? プロジェクトの進捗や品質を分析する際には、単に多い・少ないだけでなく、時間経過での変化といったデータを見る観点も必要であり、これにより状況を正確に把握できるようになる。収集するデータは多いに越したことはないが、多すぎると、メンバーへの負荷やコストが増加するため、取得するデータは十分に精査されるべきである。 問題をどう整理する? プロジェクトにおける問題や課題を整理し、定量的に測れるものをデータ収集の対象とすることが求められる。そして、上司などに説明して自分以外の視点からの意見を取り入れ、多角的に物事を捉えてブラッシュアップしていくことが重要だ。日常生活でもニュースなどの数字に興味を持つ習慣をつけることが大切である。

データ・アナリティクス入門

振り返りが生む未来の一歩

問題発生の理由は? 問題が起きた際には、何が問題でどこで起きているのかを順序立てて考える必要性を改めて実感しました。問題を一方的に決めつけ、頭の中だけで解決策をブレインストーミングしても、生産性の高い解決策には結びつかないと感じています。 売上目標の突破は? 売上目標をいつまでにどこまで伸ばすかという課題に常に直面している中で、担当先ごとの「あるべき姿」や「ありたい姿」を考え、現状とのギャップを整理しています。TG顧客の特定や製品価値の十分な伝達について、MECEの視点で問題を洗い出し、短期間での対応が必要なものと一定期間をかけるものに分け、各アプローチを検討しています。これらを定量的に把握することで、説得力のある対策が実現できると確信し、短期間でPDCAサイクルを回しながら自分の行動を検証し、精度を高める重要性を学びました。 現状改善の策は? 担当先においては、あるべき姿やありたい姿を明確に定義し、現状との差を数値で捉えることで現実的な対策を構築しています。あるべきマーケットシェアに到達するために、どこを重点的に攻略するのか、どれだけの顧客に製品価値を理解してもらい、利用していただく必要があるのかを定量的に示すことで、実現可能な戦略となると考えています。また、毎週の振り返りを通じて、翌週には具体的な行動の改善を図っていきたいと思います。

データ・アナリティクス入門

仮説と仲間が拓く未来

どうやって仮説を立てる? データ分析を始める際、いつもありがちな仮説で立ち止まっていた自分に対し、3Cや4Pといったフレームワークを活用して思考を整理し、仮説を立てる方法を学びました。仮説は単に立てるだけではなく、その検証も極めて重要であり、さらに施策を講じる際には顧客目線が不可欠であることを改めて認識しました。 意見交換は必要? また、仮説やアイディア出しの過程で、当たり障りのない意見だけではなく、否定的な意見や斬新な発想を取り入れることも必要だと感じました。一人の意見では偏りが生じやすいため、同じ目的に向かって柔軟な視点を持つ仲間との意見交換が、より良い施策を生み出す鍵になると実感しました。 基本指標をどう見る? さらに、Webマーケティングの基本的な指標であるPVやUUなどの知識は、今後欠かせない領域であると認識し、引き続きツールなどを活用した学習を進めていきたいと思います。過去にカスタマージャーニーマップを作成した経験から、自分とは異なる属性の視点を取り入れる重要性を痛感し、今後はより多様なシチュエーションを考慮して視野を広げる努力を続けたいと考えています。 集計分析で何が見える? また、クロス集計分析の手法は、現在携わっているアンケート業務において大いに役立つと感じ、今後も定量的な面から分析を深堀していくつもりです。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

データ・アナリティクス入門

ロジックツリーの本質と実務への応用

MECEの難しさと挑戦 MECEを意識しすぎるあまり、本質的なロジックツリーを作れていないことがあるのは、本当にその通りだと思いました。漏れなく整理するために「その他」を多用している自分を容易に想像でき、今回の講座内容は非常に自分事として受け止めることができました。 良質な示唆を得るには? MECEは重要ですが、あくまでフレームワークの一つであり、問題解決に繋がる良質な示唆を提供できる分け方が求められます。現状の自分の役割としては、営業戦略の策定と売上増加のための施策検討があり、常に課題解決に取り組む状況です。Week 01から学んでいる内容は、まさに今の業務に直結するものです。 定量的な分析を目指して WhatやWhereを置き去りにせず、現状の分析とありたい姿やあるべき姿をしっかり定義し、どこにギャップがあるのかを定量的に、そしてMECEに整理できるようにしたいです。前提となる「現状分析やありたい姿の定義」は、頭の中でわかった気で終わるのではなく、しっかりと言語化することを意識します。 フィードバックの活かし方 MECEのアプローチは、一人でアウトプットを出したうえで、同僚や上司からフィードバックをもらい、自分では気付けない「漏れやダブり」を見つけることが大切です。そのためのブラッシュアップを行い、練習を重ねていきたいと思います。

データ・アナリティクス入門

理想と現実、ギャップを超える力

合意形成はどう進める? 問題解決に取り組む際は、まず「理想のあるべき姿」と現状とのギャップを整理することが重要です。表面的に見つかった問題をそのまま解決していくのは、時には運に任せる側面があり、必ずしも大きな影響を与える要因とはなりません。そのため、まずは現場の関係者と「理想のあるべき姿」についてしっかりと合意形成を図ります。もし現場側に理想がなければ、関係者と共に理想の策定に取り組む必要があります。 目標設定は本当に明確? 自身の業務においては、現場で設定される各部門の達成目標=理想を出発点とし、そこから現状とのギャップを明確に報告する役割があります。しかし、現実には現場で理想が設定されていなかったり、目標が曖昧である場合が多く、部署として理想について十分に把握できず、ギャップを正確に報告できていない現状があります。 理想共有はどうやる? このため、まず現場の「理想」を共有し、正確に把握することが重要です。もし、現場側で理想が不明確であれば、定量的な目標の設定を提案し、協力して策定することが必要です。次に、現場の理想と実際の状況との間に存在するギャップをしっかりと報告するステップに移ります。 連携で成果は得られる? 以上のプロセスを実践することで、現場と部署が連携し、理想に近づくための効果的な問題解決が進むと感じています。

データ・アナリティクス入門

問題解決への新しいアプローチを発見

問題解決の第一歩はどこ? 問題解決の4つのプロセスを学びました。起きたことをwhat・where・why・howに分けて考えると、普段ではwhereやwhyについては何となく意識しているものの、その「何となく」から思いつきでhowに至ってしまうことが多いと感じました。whatについてはほとんど考えられていないように思います。また、現状とあるべき姿のギャップを言葉にしようとしても、うまく出てこないことに気づかされました。これは自分がいかに漠然とした考えで問題に向き合っていたかの証拠だと感じました。 定量的分析を習慣化すべき? 目の前のことに一喜一憂せず、日々の問題には定量的な分析を行うことを習慣づけたいと思います。たとえば、キャンペーンの商品分析やチームメンバーの業務量の適正化なども、定量的に分解して考えると有効です。私たちの基本業務である当事者トラブルの解決にも、この方法が応用できるかもしれません。 ギャップをどう埋める? 最初に取り組むべきは、現状とあるべき姿、またはありたい姿が個々人で漠然としてまとまっていない点の改善です。そのギャップを埋めることが大切です。問題解決の話し合いの場ではまずwhatを意識し、周囲との合意を図ることが重要です。ここを丁寧に行った後に、物事の分解・整理を学んだ通りに進めていきたいと思います。

戦略思考入門

実態把握が生む経済戦略のヒント

なぜ実態把握が大切? 規模の経済について学んだ中で、単純に大量生産して稼動率を上げるだけでは十分ではなく、まず自社の実態を正確に把握し、整理することの重要性を再認識しました。 他社状況はどう把握? また、規模の不経済に関しては、依頼先や先方の状況、さらには各社の資産状況や稼動状況をしっかり把握した上で検討する必要があると感じました。 資源活用の秘訣は? さらに、現有資源の他分野への有効活用や、範囲の経済の視点から関連部分を抽出するなど、柔軟な視点をもって検討を進めることが求められます。 部品流用はどう見る? 商品開発においては、コストが最重要項目であるため、同一の部品や仕組みの流用可能性を考えることが大切です。しかし、単にコスト面だけに目を向けるのではなく、そうした流用が商品の価値や魅力にどのような影響を与えるかも同時に検討しなければなりません。 整合性はどう保つ? 各商品の検討では、自分の担当業務だけでなく、関連部分との整合性を確認しながら、最も適した手法を選ぶことが必要です。1つの部品においても、現状の位置づけを把握し、再利用すべきかどうか、または何を第一優先にするかを定量的に判断することが重要だと考えます。 実例はどう参考? 皆様が実際に体験された事例があれば、ぜひ参考にさせていただきたく思います。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

戦略思考入門

捨てる決断で見える未来

捨てる選択の価値は? 捨てる選択が顧客の利便性を向上させる点や、惰性で物事を進めないこと、さらには専門家に任せる判断も時には必要だという視点は、とても印象深かったです。また、定量的な指標だけでなく、数字では表しきれない顧客との関係性などの判断基準も併せ持つことで、より良い「捨てる」選択ができると感じました。さらに、トレードオフが発生する要因として、資源の制約(人・もの・お金)と、相反する性質を持つ要素(例:筋力とスピード)の両面が影響していることに新たな学びを得ました。 数字だけで判断できる? 一方で、定量的な指標だけで判断が難しい業務においては、組織に与えるインパクトを示す基準(影響を受ける人数、エンゲージメント、理解度など)を設け、時間の制約がある中で優先順位を決める際に活用することが重要だと感じました。たとえば、営業活動では顧客にとっての売上や利益、自社商品のパフォーマンス、そして時間あたりの生産性などを考慮し、何を実施し、何を見送るべきかを判断する手助けとなるでしょう。今年度の業務においても、組織に与える影響度(影響を受ける人数や影響の持続性など)の観点から整理し、雑務的な作業が惰性によるものになっていないか、また新たな取り組みを始める際には既存の何かを削減するという視点も持って活動していきたいと考えています。
AIコーチング導線バナー

「定量 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right