戦略思考入門

選択と集中で成果を出す心構え

目的は明確ですか? 選択と集中という考え方を、実習を通じて深く理解することができました。まず大切なのは目的を明確にすることです。明確な目的を持つことで、選択すべきものが見えてきます。選択肢を整理する際には、目的に立ち返ることで解決策が導き出されるように感じました。しかし、どれを捨てるべきかの判断は容易ではありません。そのため、定量的な指標は不可欠だと考えます。何となくの考えや慣習で判断するのではなく、数値に基づいて判断することで、自分自身だけでなく周囲の納得も得られるのです。トレードオフが発生することは十分に考えられるので、軸を持ち、最終的な決定に向けて実行していきたいと思います。 優先順位はどう? 数多くの取組を抱える中で、正しい優先順位をつけることが重要です。目的は「ある程度」明確になってきたので、効果が高いものや必要不可欠なものに時間を充てるように整理し、実行に移していきます。 成果の出し方は? 上司によっては、今回学んだことがうまくできている人もいれば、できていない人もいます。そのため、必ずしもブレイクスルーを求めるのではなく、ベストなタイミングと立ち振る舞いでチームとして成果を上げたいと考えています。 共有と整理は? 周囲に対しては、目的を明確に共有していくことが肝心です。自分に対しては、目的を分解し整理することが求められます。特に、積み上げで進行している現状があるため、定量的な指標に基づいて仮説を立て、検証し、状況をまとめることが必要です。指示があるからやるのではなく、本当に必要なものを実行する意思を持ちます。指示があっても必要でないものについては、しない理由を持って断る姿勢が重要です。現状はいささか混乱しているため、まずは情報整理を優先して進めていきます。

戦略思考入門

優先順位付けと新たな発見への挑戦

相手との関係性をどう考える? 演習を通じて、相手との関係性や取引額、さらには成長の可能性といった観点から優先順位を考えていました。しかし、後半では時間に基づいた利益という定量的評価も取り入れる視点を学びました。この判断基準が自分に不足していたことを痛感し、大変貴重な学びとなりました。特に、取捨選択のプロセスにおいて「捨てることで顧客の利便性が向上する」場合があることに気づかされました。具体的な事例に基づく判断は、実際には非常に難しいと感じました。 優先順位をどう設定する? 優先順位を設定する際には、様々な要因を整理することが重要です。特に取引額や避けるべき困難について深く考えることは、非常に良いやり方です。また、自らの判断基準が不十分であった点を振り返ることで、次のステップでの実践的な知識を得ることができるでしょう。 クライアントの評価基準は? クライアントへのアプローチでは、限られた時間の中でこれまでの関係性のみならず、時間をかけても成果が得られるかといった定量的な判断基準も取り入れて考えていきたいところです。ただし、私が担当している業務自体が新しいものであり、進め方を模索している段階です。そのため、これらの定量的判断をアプローチの優先順位に組み込みつつ、業務自体の必要性や無駄を検討し改善を進めていく必要があります。 改善を進める方法は? 現在のクライアントに対しては、売上高以外の指標、例えばLTVや自社サービスの活用度を見直し、それまでの関係性とあわせて優先順位を再考します。また、業務にかける時間に対する価値を改めて評価し、外部委託できるものがないかも検討します。さらに、自分だけで考えず、業務をあまり知らない人にも説明し、別の視点から意見を求めることも取り入れたいです。

データ・アナリティクス入門

データで見える真実: 分析の新たな視点へ

重要な三つのポイントとは? 私が特に重要と感じた点について整理すると、次の三つが挙げられます。 まず、「分析は比較なり」という点です。物事を細分化して整理し、各要素の性質や構造をはっきりさせることが求められます。また、具体的な比較対象や基準を設けることで、状態を把握しやすくなり、意思決定もしやすくなります。 データ分析の目的確認はなぜ大事? 次に、「データ分析を始める前に目的の確認をすること」の重要性です。仮説を立てて取り組むことが強調され、目的と照らし合わせながら比較することで、目に見えない情報を想像しながらの分析が可能になります。 最後に、「Apple to Appleになっているか」の確認が重要です。不適切な比較対象を避け、意思決定に役立つ分析を行うよう心がけなければなりません。 グラフの可視化はどう変わる? また、グラフの可視化においても学びがありました。データの種類に応じた加工法やグラフの見せ方を学び、「どんなデータを」「どう加工するとわかりやすいか」をより意識する必要があります。これを企画ごとのデータ分析に役立て、反響率や成約率、属性やエリアなど、比較すべき視点が今まで以上にあることに気づかされました。 実践にどう活かすか? さらに、作成するグラフの可視化方法についても実践していきたいと感じました。分析の本質をチーム内で共有し、分析に取り組む前の目的の明確化を意識することが必要です。そのうえで、これまで出してきた分析指標が正しい比較だったのか、新しい視点はないかを見直し、より良い意思決定に役立つものにしていきたいと思います。 企画運営の課題を定量分析によって発見し、根拠のある提案ができるようにするために、まずは学びを実践していくことが大切だと感じました。

戦略思考入門

捨てる勇気が生む未来の可能性

捨てる重要性とは? 捨てることの重要性は、明確な判断軸を持って取捨選択することにあります。その判断基準は、単一の要素だけでなく複数の要素から多面的に検討することが必要です。また、仮定思考を用いて未来を想定しながら進めることも必要です。 どんな評価が重要? 今回学んだことの一つとして、売上や利益の定量的な基準だけでなく、顧客との関係性といった定性的な基準も含めて、投資対効果(ROI)を考えて優先順位を決めることが改めて整理できました。捨てることが顧客の利便性を増す場面もあり、新しい意見を取り入れることで無駄を省くことができます。自社でできないことは外部に任せることも重要です。私自身も業務遂行で違和感を覚えたことを業務改善に活かしてきました。これからもメンバーの意見を重視し、改善に繋げていきたいです。 リソースの使い方は? 営業組織として、限られたリソースで最大の成果を出すための取捨選択はこれまでも行ってきましたが、さらなる磨きをかけたいと考えています。働き方の面では、長時間労働になりがちな現状を変え、チーム全体の生産性向上に努めたいです。具体的には、自組織で行わない業務は他のリソースに任せたり、その業務が顧客利益に直結するかを見極めたりすることが重要だと感じました。 顧客戦略はどう? 最終的には、自組織の顧客戦略にもこれらの考え方を応用していきたいです。顧客アプローチの優先順位付けでは、売上や利益の定量的な要素だけでなく、顧客との関係性、成長予測といった定性的な基準も取り入れたいと考えています。判断基準や軸を明確にし、それをメンバーに伝えることが重要であると感じました。過去の経験や直感に頼るだけでなく、論理的な基準で判断する姿勢が求められると反省しています。

データ・アナリティクス入門

ナノ単科で見つける解決のヒント

何が問題の始まり? 問題解決には、まず「何が問題か」「どこに問題があるのか」「なぜ問題が生じたのか」「どのように対応するか」というプロセスがあることを学びました。最初に、直面している課題や状況から現状とあるべき姿のギャップを把握し、次に客観的なデータを用いて問題箇所を詳細に特定します。この際、MECEやロジックツリーの手法を用いることで、抜けや重複なく整理することが重要です。さらに、問題の背景にある原因を細かく分解し、真の原因に迫る作業が求められます。最後に、さまざまな案を検討し、現状と理想を照らし合わせながら、適切な対策を導き出していきます。 なぜデータが重複? また、phaseごとに製造原価の算出を実施しており、算出データの取り込みとその活用が行われています。しかし、各phaseで実施している業務自体はほぼ同じ内容でありながら、同一データの取り込みなど、重複して実施している作業が存在しています。理想的には、データベースにphaseごとのデータが一元管理され、必要な時に迅速に利用できる体制が整っているべきです。しかし、現状では必要な時に都度データを作成し、同じ内容を複数回取り込むなど、業務に無駄が生じています。 原因はどう分解? このギャップの原因を明確にするためには、実際の業務フローや工数、業務のインプットとアウトプットの詳細、さらにはシステム上の問題点など、ファクトに基づいた確認が不可欠です。定量的なデータを捉えた上で仮説を立て、MECEやロジックツリーといった手法を活用して問題点を細かく洗い出します。こうした手法により、データの切り口を複数持ち、各要素の影響度を把握してプライオリティを付け、効率的に問題解決へと導くことができます。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

学びを深めるためのプロセス活用法

問題解決プロセスの重要性 物事の問題を解決する際には、プロセスに分けて考えることが重要です。問題解決のプロセスとして、「What→Where→Why→How」の順序で考えることで、思考を整理して進めることができます。 ギャップをどう具体化する? まず、Whatについては、あるべき姿と現状とのギャップを具体化し、定量的に明確化することが求められます。次に、Where、Why、Howについては、ロジックツリーを用いて目的に合わせた分析を行います。ここで重要なのは、ロジックツリーがMECE(Mutually Exclusive, Collectively Exhaustive)である必要があるものの、必ずしもMECEでなければならないわけではなく、目的に応じて臨機応変に使うことが求められます。 事業部の課題分析法とは? 事業部の課題については、まず現状を分解し、どこが問題でどこが成功しているのかを見極め、その中で原因を深掘りして検討します。また、プロジェクト(PRJ)の進行においては、ゴールと現実を明確にすることで全体の認識を統一し、進行を円滑にすることが重要です。 進行管理と数値化の意義 進行管理業務では、プロジェクトの目標設定及び現状を改めて数値化し、現在の問題が本当に問題であるかを再認識します。会議の進行においても、相手の目的や論点をロジックツリーを使って分解し、論点に基づいた議論を進めることが求められます。 学びのアウトプットをどう活かす? 最後に、アウトプットとして自分が学んだことを整理し、自分の言葉で言語化することで周りに共有し、「What→Where→Why→How」の思考を習慣化することが大切です。

データ・アナリティクス入門

データ分析で見分ける成功の鍵

データ分析で比較はなぜ重要? データ分析の基本は「比較」であることを学びました。しかし、ただ単に比較すれば良いというわけではありません。分析の目的に応じて比較の軸が異なるため、その目的を明確にすることが重要です。さらに、データ分析の結果を報告する際には、見せ方を工夫することも大切です。比率を見たいのか、推移を見たいのかなど、定量データに応じた適切な見せ方を検討する必要があります。 飛行機の生存能力をどう改善? 動画の中で、飛行機の生存能力を上げるための改善点を考えるという課題がありました。初めは「欠損している部分」を改善するべきだと思いましたが、分析の目的を考えると、「欠損していない部分」を補強する方が生存能力が上がるという解説を見て納得しました。 業務でのデータ分析の課題とは? 日々の業務でも、お客様がデータ分析をしたいと言いつつ、現状の把握だけで終わってしまうケースが多々あります。そこで、データ分析の基本として、目的の明確化と比較の重要性を伝えていきたいと思います。たとえば、実績だけの数値を並べているケースでは、その数値が良いのか悪いのか判断できず、その後のアクションが不明瞭になっているお客様が多くいます。このような場合には、具体的な提案を行いたいです。 学びを実践するプロセスが大事? 学んだことを実践し、アウトプットすることで、その結果が良かったのか、改善の余地があるのかを言語化することも大切です。振り返りを必ず行い、学んだことを整理し自分の中に落とし込むプロセスを欠かさないようにします。グループワークや講義の中では、自分ごととして捉えることを意識し、積極的に考え、発言するように心がけています。

デザイン思考入門

定性分析で見える現場の真実

定性分析はどう整理? 現在、自社の業務改善のための分析を進める中で、これまで漠然としていた内容が「定性分析」であったことに気づき、大きな発見となりました。業務のやり方は数値で把握しにくいため、現場での観察やインタビューを通じて状況を捉え、得られた情報から実態を明らかにする必要があると感じました。また、コーディングにより一次コード、二次コードと分類し、フレームワークやプロセスに落とし込む方法を実践することで、今後も学びを深めていこうという意欲が湧きました。 顧客課題をどう捉える? 顧客課題仮説の導出は非常に難しいと実感しました。定性分析でコーディングを進める際、観察やインタビューから得られる情報が十分かどうか不安になるとともに、ペルソナやカスタマージャーニーマップの捉え方によって仮説の内容が変わる点も大きな気付きでした。今回の講義で学んだのは、顧客課題仮説を広く捉えるのではなく、焦点を絞り「ユーザー」「状況」「課題」「ソリューション」という具体的な文書化を行う手法であり、その手法は非常に有効だと感じました。 問題本質をどう捉える? さらに、「問題の本質を捉える」から始まり、洞察の整理と可視化、顧客課題仮説の作成、ユーザー中心の視点の維持、そして検証と改善という流れを作ることの重要性を学びました。定性分析では、プロセスやフレームワークの構築により、定量分析で検証すべき仮説が明確になるという点も理解できました。実際の現場での観察からは、ユーザー自身が気づいていない暗黙知に触れることができる有効な手法であることを実感しました。今後はこれらの経験を活かし、顧客に対する課題分析をさらに実践していきたいと思います。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

戦略思考入門

業務効率化と顧客対応の統合術

会社の繋がり方とは? 山田さんの視点で描かれた親身になってくれる会社、先輩との繋がりのある会社、会社間の繋がりが説明されており、次第に定量的な価値にシフトしている様子がとても印象的でした。利益額や工数を基にした判断基準は、今後の顧客対応に役立つと思いますが、その時にロジカルに捨てる判断が本当にできるのかはまだ疑問です。組織が大きくなるにつれ、創業メンバーが行っていた業務が惰性で残ることがあります。しかし、新しい意見をしっかり受け止め、必要のないものはきちんと捨てるようにしたいと思います。 新規事業の挑戦とは? 私の部署は新規事業を扱う部隊で、現段階では売上高や利益率のデータが十分に揃っていないため、定量的な優先順位を設定する朝の時間はありません。現在は、顧客の事業規模(売上高)と自律性で簡単な優先順位を決めていますが、リソースの逼迫が進むにつれて、どこかで切り捨ての判断が必要になると思います。 業務効率化の必要性は? 社内にはまだ多くの無駄な業務がありますので、社内プロセスを効率化し外注化を進めたいです。一方で、社外のお客様の優先順位付けは後回しにしたいです。役員からは売上げ見込みを試算するように指示されていますが、最初から事業規模が一定以上の特定業界の顧客にターゲットを絞っているため、現時点で売上見込みが少ない企業を即座に捨てる判断には激しないかもしれません。しかし、「なぜその顧客と取り組んでいるのか」は将来的に問われるでしょう。 優先順位をどう整理する? まずは、現顧客リストの取り組み状況から再度売上見込みを試算し、優先順位の妥当性を客観的に説明できるよう整理していきたいと思います。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

「定量 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right