データ・アナリティクス入門

数字が紡ぐ学びと成長の物語

各項目分解の効果は? 各項目を分解して、それぞれの数値に注目する手法は非常に有効であると学びました。実際、インサイドセールスの業務では各項目に基づいて数値を集計しており、このやり方が資料作成などの他の業務にも応用できることを実感しました。 A/Bテストの判断は? 一方、A/Bテストに関しては、正直なところ疑問点が残りました。教科書上では理解できる内容ですが、実際に予算を投じる判断となると、やはり検討が必要だと感じます。 図解と数値比較の視点は? また、資料作成時に業務の図解を作成する際、各項目を分解して図にする考え方は今回学んだ内容に似ていると感じました。しかし、実際に数値を比較する際は、割合を用いたシンプルな方法が最適だとも思いました。そのため、簡単な割り算を暗算できるようにしておくことが大切だと考えます。 実践習慣の重点は? さらに、実践に向けた習慣として、以下の点を意識していきたいです。まず、図解のパターンを把握すること。次に、簡単な暗算を身につけること。そして、what、where、why、howの流れをフレームワークとして常に念頭に置き、議論の根本から取り組むようにすることです。これらを習慣化して、業務に生かしていきたいと思います。

クリティカルシンキング入門

データ分析の新しい視点発見!

データ分析で新発見を得るには? データを分析する際には、さまざまな切り口から考え、実際に手を動かしてデータを加工することで、新たな発見が多くある。分解の粒度が大きい状態で導き出した結果を安易に結論としてしまうと、誤った判断を下す可能性がある。そのため、分解を行う前に全体を把握し、定義することが重要だ。 仮説をどう裏付ける? これまでデータを分解して分析することは多々あったが、全体を把握し、定義したうえでMECE(Mutually Exclusive, Collectively Exhaustive)な切り口で分解できていたかというと、必ずしもそうではなかった。また、自分が立てた仮説を裏付けることを目的として、恣意的に切り口を設定していたこともあった。まずは、オフィス内のスタッフごとの工数負担について、全体を把握したうえで分析したいと思う。 先入観を排除する方法は? 普段、自分が抱いているイメージという先入観をまず取り除き、工数実績などの数値から導かれた結果にフォーカスする。そのうえで、全体像を把握し、MECEを意識して切り口を決定する。具体的には、全員の残業時間も含めた総労働時間をもとに、業務ごとの工数を比率として算出してみたい。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

データ・アナリティクス入門

数値とABテストで見極める新戦略

数値化の効果はどう? 実践演習では、複数案を選択する際に「数値化」する手法を学びました。自分なりに言語化して記載する中で、他者に説明する際にもこの数値化が有効であると実感しました。 ABテストって何? また、動画学習ではABテストについて学びました。これまでなんとなく比較手法を採用していたものの、今後は期間や状況を意識し、差異の少ない環境で比較する重要性を再確認しました。 商品の魅力は伝え方次第? 業務面では、スーパーマーケット等へ食品を流通させる中で、商品の訴求ポイントが多数存在するため、どの情報をどのように伝えるか迷うことが多くあります。例えば、ブランドの特徴や原料産地、有機、減塩、糖質オフ、カロリーなど、様々な訴求要素がある中、限られた紙面スペースやウェブバナーでどの情報を選ぶか判断に苦慮しています。そこで、今回学んだABテストと数値化の手法を活用し、客観的に効果の高い訴求方法を選定していきたいと考えています。 評価方法はどう設定? なお、数値化にあたっては、個人の考えやバイアスが影響しやすい面もあり、できるだけ公平かつ客観的に評価できる方法やコツがあれば、今後の業務改善に役立てたいと思います。

戦略思考入門

数値での判断で変わる未来

数値で判断すべき? 意思決定をする際には、何かを捨てることが必要です。定性的に判断すると、顧客との関係性や歴史、背景などにより、判断が鈍ることがあります。そこで、数値を用いて定量的に判断し、感情に左右されないようにする検証が求められます。 指標はどう設定? 結果が出る前に、成功と失敗、継続と終了の指標を設定することは、感情的な判断でロスを増やすことを防ぐ手助けとなると感じました。実践においても、数値を基に判断しないと、歴史や背景から意思決定にゆがみが生じる可能性があると感じています。そのため、さまざまな角度から数値を確認し、安易に判断しない姿勢を保つことが大切です。 引き算は効果的? 基本的に積み上げ式の足し算で運用されることが多いですが、あえて引き算を行い、顧客への伝わりやすさを意識するべきです。ターゲットに何を伝えるべきかを考慮した上で、捨てることを決定します。 判断基準は整ってる? 捨てる際には、以下の点を確認します。①本来の方向性は何か?②ブレークスルーとなる案はないか?(一石二鳥の案)③現状は中途半端ではないか?④トレードオフが発生していないか?これらを検討し、捨てることを意思決定します。

アカウンティング入門

数字の裏側に光る実践の知恵

本業の利益って何? 営業利益は本業で得られる収益と費用の差額、つまり本業での儲けを示す指標です。一方、経常利益は本業以外の収益や費用も含め、事業全体として持続的に利益が出ているかを判断する材料となります。最終利益である純利益は、これら一連の利益計算の総括として位置づけられます。 損益項目の違いは? 企業ごとに提供する価値やビジネスモデル、コンセプトの違いから、各損益項目の特徴や数値は異なるため、PL(損益計算書)をもとに自社の強みや弱みについて仮説を立て、分析することが求められます。 計画は合致している? まず、所属部門が策定する年間実施計画について、取組アイテムや目標、スケジュールが自社のPLと合致しているかを確認することが重要です。また、担当するプロジェクトの商談においては、ターゲット価格から原価、利益までを検討する際に、自社の決算説明会の内容をしっかり理解し、部下にもその要点が伝わるように説明する必要があります。 他業界の価値は? さらに、製造業に勤務している立場から、製造業以外の業種が提供している価値とPLとの相関関係を見直し、どのような特徴として表れているのかを分析してみることも有益です。

戦略思考入門

業務効率化の秘訣:「捨てる」技術とは?

数字は信頼できる? ビジネスにおいて、「捨てる」という判断を下すことは難しい。しかしながら、時間は有限であり、全てのことに対応することは不可能であるため、何を継続し、何を捨てるかを見極めるためには、より深く考えることが必要だと感じる。その際、感覚に頼らず、数値的な根拠に基づいて判断することが重要であり、他者を説得する場面でも役立つだろう。私は、こうした数値的根拠をもとに「捨てる」技術を身につけたいと考えている。 不要業務は見直す? また、業務においては、かつては重要だったが時代の変化とともに不要になったものも存在すると考えている。業務の合理化や効率化を進めるためにも、不必要な業務がないかを見直す必要がある。そして、業務の目的を再確認し、適切な判断を行いたいと思う。 目的と順番は? 具体的には、業務を一つずつ振り返り、その目的を考えることが大切だ。目的が不明瞭なものについては、過去からの慣習として続いている可能性があるため、「捨てる」ことを検討する。また、業務を可能な限り数値的根拠で示し、それをもとに優先順位をつけることで、採算性の低いものについては勇気を持って捨てるという決断を行うべきである。

戦略思考入門

効率的な優先順位で成果を最大化

リソース投資の重要性とは? 仕事の優先順位を決める際、時間や労力といった個人のリソースに対する投資対効果を考慮することが重要です。特に、個々の業務や顧客への投資対効果が低い場合、対応を中止する決断も必要であることを学びました。リソースの数値化は難しいですが、スケジュールに記録することで可視化できます。 会議参加の優先順位のつけ方 現在、私は企画の業務として、研究部隊の様々な会議に招集されています。しかし、全てに参加する必要はなく、研究部隊が十分に対応できることも多いです。企画側から依頼する研究テーマや、研究進捗報告の会議は今後の重要な方向性を決める場であるため、必ず参加します。そのため、会議への参加は能動的に優先順位をつけたいと思っています。 講演会やセミナー参加時の判断基準 会議に出席するかどうかをまず検討し、優先度の高い業務があればそれを優先する意向を上司に報告します。また、個人で調査業務を行うため、講演会やセミナーに参加することも多いです。その際、聞きたい内容があるか、講師の専門性によって自分の検証事項に関連する情報が得られるかどうかを考慮して投資対効果を見積もり、参加を検討したいと考えています。

クリティカルシンキング入門

思考力UP!マーケ現場での実践知

焦りはなぜ出る? 自分の考えには思い込みや偏りがあることを認識しました。特に、すぐに発言しなければならないという焦りから、思考せずに発言してしまうことがあります。そのため、まずは論理的に考えるためのルールをしっかりと持ち、客観的に思考し、それを言語化することが重要だと感じました。 学びはどこで活かす? 現在、マーケティング室の責任者として働いていますが、以下のシーンでこの学びを活かせると考えています。他部署へマーケティング事業の提案をする際、上司へアイデアの提案をする際、また、部下との目標に対しての施策が可能かどうかコミュニケーションを取る際、さらには他部署との業務調整をする際です。 判断の秘訣は何? このような場面においては、まず事象を的確に定義することが大切です。つまり、事実は何かを見極めることです。そして、数値的に情報を客観的に把握し、本質的な部分に集中します。さらに、広い視野で多面的に把握することも重要です。これによって、本当にそうなのかと主観や感情にとらわれない姿勢を維持しながら、より良い判断ができると考えています。この思考を業務に取り入れていきたいと思います。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

クリティカルシンキング入門

振り返りで見つけた学びのヒント

知識の整理はどう? 本講座の締めくくりとして、WEEK1以降の振り返りにより、自分に残った知識と忘れてしまった知識が明確になりました。忘れている内容については、反復練習とアウトプットを通じて定着を目指します。具体的には、数値の分解やグラフ化、そして問題解決の観点を「What」「Where」「Why」「How」といった切り口で整理していきます。 会議で何を問う? また、日々の業務においては、会議や定期的な打合せの中で、イシューや問いから主張とその根拠を確認することで、判断の確度を高めたいと考えています。同時に、自分が作成する提案資料やプレゼンテーションにおいても、主張したい内容を明確に言語化し、説明責任が果たせるような根拠づけを行うことを目指し、継続してインプットに努めます。 実践はどう進む? さらに、明日からの業務でこれらの実践を開始し、実施内容を振り返りながら反復練習を重ねていきたいと思います。業務終了時には、その日の振り返りとして400文字程度にまとめる習慣をつけ、スキルアップを図る予定です。これらの取り組みにより、自身で設定した理想像の実現を目指していきます。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

「数値 × 判断」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right