データ・アナリティクス入門

キャンペーンを成功に導く効果検証術

キャンペーン効果をどう活かす? キャンペーンの効果検証に生かすことができると思います。これまで効果検証を次の施策や会社の計画に反映できていないことが課題でしたが、キャンペーンの結果を本講座の分析法で分析し、そこから見えてくる考察を基に新しい取り組みを提示したいと思います。 商品性の比較はなぜ必要? また、現在部署で新規事業の検討を行っております。その商品性の検討に際して、他社商品を比較することが必要です。分析を行うことで、商品性に取り込みたい要素や難しい要素を明らかにすることができると思います。 課題解決に向けた具体策は? これらの課題に対し、次のことを行っていきたいです。 - WEEK1で学んだ内容の共有 - 分析対象となるものの選定 - 比較対象のピックアップ WEEK1で学んだことは既にチームメンバーに共有しており、メンバー全員が納得した内容でしたので、今後も新たな気づきを共有し、実践の場で活用していきたいと思います。

データ・アナリティクス入門

学生退学率を下げるための分析法を学ぶ

比較で分析を深めるには? 「分析は比較」という考え方が非常に印象に残りました。単に分析対象を見るだけでなく、他と比較することでその状態を分かりやすく確認できます。また、比較の際に「目的」や「分析に必要な要素」を考慮することで、ぶれない分析が可能になると学びました。 学生の退学率にどう対策する? 私は大学で勤務しており、学生データの分析を頻繁に行っています。特に「入学した学生の退学率をどのように防ぐか」という大きな課題が常にあります。この問題を解決するためには、問題を適切に切り分けて、それに対する適切な施策や提案を行う必要があると感じました。 退学率低下の具体策は? 具体的には、「学生の退学率を低下させる」といった目標が定まっているので、まずはその問題を要素ごとに分けて考えます。例えば、退学率の過去の推移を確認し、変動が大学内部の問題によるものなのか、それとも外部要因によるものなのかを区別することから始めます。

クリティカルシンキング入門

効果的な伝え方に目覚めた研修

どうしてシンプルに? 相手に伝えるのではなく、「相手に伝わる」という観点から多くの学びを得ました。これまで文字の色を変えることで目立たせてきましたが、タイトルの強調には斜体を使うなど、他の方法もあることに気づかされました。不要な要素を取り除き、シンプルに考えることが重要だと感じました。 グラフで比較する? 現在、研修アンケートの回答率や評価を示すまとめ資料を作成していますので、今回の演習で学んだことを活用したいと思います。また、昨年のアンケート結果と比較してどうだったかを考える際、比較をグラフで表現するのも効果的だと感じました。 スライドは伝わる? アンケートの集計が完了し次第、今回の演習を活かしてスライドを作成します。スライドは2パターン作成し、どちらがより効果的に伝わる内容になっているか、周囲のメンバーに意見を求めてみるつもりです。その際には、強調すべきポイントも伝えつつ、アドバイスをもらう予定です。

データ・アナリティクス入門

数字の裏に眠る真実を探る

定量分析の意義とは? 定量的に比較できる状態で物事を分析する大切さを実感しました。特に、MECEやロジックツリーといった手法は、情報を漏れや重複なく整理し、階層ごとに把握するのに非常に有用で、正確な分析の基盤となると学びました。 原因背後の要因は? また、従業員の不満などの現象が発生した際、単に直接的な原因と結びつけるのではなく、その背景にある複数の要因を整理することが重要だと考えるようになりました。こうしたアプローチは、複雑な要素が絡み合う状況において、分析の精度を高める上で大いに役立つと思います。 分析の共通点捉える? さらに、人に関する分析の場合も、複数の要素が関わるため、情報が見落とされたり重複したりする恐れがあります。そこで、今回学んだ手法を活用し、分析対象を構成する各要素に注目することで、一見異なる事象にも共通点を見いだしたり、特定の性質に偏っていることに気づけるよう努めたいと感じています。

データ・アナリティクス入門

クイズで学ぶ比較と本質

比較で見える本質は? 「データ分析の本質とは何か」という視点から、『比較』の重要性に気付かされました。目的達成のために、どの要素を比較すべきかを考える際、目先のことにとらわれず、本質に目を向ける必要があると実感しました。特にクイズ形式の事例は、この点を分かりやすく示してくれました。 経営とデータ活用は? また、経営においては経験や勘も重要ですが、成長とリスクテイクのバランスをとるためにはデータ分析が欠かせないと感じています。現状、社内に十分なデータ活用の文化が根付いていないため、まずは意思決定に役立つデータを整備し、データ活用への理解を深める啓発活動に注力したいと思います。 信頼をどう築く? さらに、データ分析結果の有効性を社内で理解してもらうためには、まず信頼できるデータを整えることが重要です。必要なデータの所在すら不明な状態からのスタートとなるため、地道な取り組みを積み重ねていく覚悟です。

データ・アナリティクス入門

仕組みを解読、未来を拓く

ボトルネック、どう見抜く? 採用プロセスをステップごとに区切り、どこにボトルネックがあるのかを特定していく手法が印象的でした。要素を細かく分解し、整理・比較することで、問題の把握と理解が非常にしやすくなった点が魅力的です。 販促効果はどう検証? 自分の勤務先でも、売上に至るまでのプロセスが「申込件数」「審査承認」「成約」などに大別できるため、より細かく検証したいと考えています。さらに、担当する各販売店ごとに分け、各特徴ごとにグループ分けを行って共通点を洗い出すことで、具体的な対策に結びつける取り組みを行いたいと思います。まずは、特定の支店に焦点を当て、その販売店データを集め比較・検討します。その結果、もし明確な特徴が見えてグルーピングが可能となれば、詳細な報告書を作成し、リベートやアローワンスなどの販促策に活かす予定です。また、A/Bテストが可能な場合は、さらなる効果検証にも挑戦したいと考えています。

データ・アナリティクス入門

比較で見える学びの真実

Aの有無はどう影響? 分析の本質は、効果があるかどうかを明確にするために、Aがある場合とない場合を直接比較する点にあります。Aの有無で起こる違いを比較することにより、効果の有無がはっきりと浮かび上がります。 比較対象は何を基準に? また、適切な比較対象の選定も重要です。分析したい要素以外の条件を揃える「Apple to Apple」の視点を持つと同時に、成功事例だけでなく失敗したケースも考慮する「生存バイアス」に注意する必要があります。成功だけに目を向けると、誤った判断につながる恐れがあるためです。 学びを活かすには? 今回の学習で特に印象に残ったのは、「分析は比較なり」という考え方です。仕事の場面、たとえば事業計画で事業の方向性を示す根拠や理由を説明する際、比較の手法が非常に役立つと感じました。今後も自分の意見や判断の根拠を示す際に、この考え方を意識して分析に取り組んでいきたいと思います。

データ・アナリティクス入門

代表値の落とし穴と細部の魅力

代表値の意外な落とし穴は? 代表値の有用性と、その落とし穴について理解が深まりました。データを活用する目的に応じ、代表値の背後にある背景を把握するためには、必要な手間を惜しまない姿勢が大切であると再認識しました。 毎月の数字はどう? また、毎月の売上や費用といった数字は、ひとまとめにすると他月と大きく変わらないように見えても、実際には中身が大きく異なることが多いです。このため、詳細な項目の変動にも着目し、単なる異常の有無だけでなく、次月以降への影響などを踏まえて、より深い検証に努める必要があると感じています。 内訳の分析は必要? さらに、月次決算の報告前の分析においては、全体の数字(代表値)だけでなく、必ず内訳の変動を比較することが重要です。単月の変動に留まるのか、次月以降も影響が及ぶ傾向があるのか、または対策が必要な内容なのかを、各要素ごとに分けて分析するよう心がけたいと思います。

データ・アナリティクス入門

シンプルな挑戦、未来への一歩

A/Bテストの魅力は? A/Bテストが注目される理由は、そのシンプルさにあります。限られた要素を2つ以上のパターンで比較することで、運用や判断がしやすくなります。また、テスト用の画像やテキストを用意するだけで低コスト、少ない工数で実施できるため、実験のハードルが低いのも魅力です。さらに、いきなり新しい案を採用する場合と異なり、段階的な改善によりリスクを最小限に抑えながら効果を測定できる点も大きなメリットです。 業務問題の解決策は? 日々の業務において発生する問題に対しては、「What」(問題の明確化)、「Where」(問題箇所の特定)、「Why」(原因の分析)、「How」(解決策の検討)というステップを意識し、効率的に対処しています。特に、問題の本質を捉えるために業務プロセスを細かく分解するアプローチを採用しており、複数の解決策を洗い出し、その根拠を基に最適な方法を選択するよう努めています。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

「比較 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right