データ・アナリティクス入門

目的とデータがひらく未来

目的は何でしょうか? 今回の講義を通して、まず目的を明確にすることの大切さや、その目的に沿って適切な情報を集めること、そしてデータを加工し比較することで初めて分析が成立するという基本的な考え方を学びました。 難問の比較ってどう? また、難しいテーマの比較においては、直接的な比較だけでなく間接的なアプローチも可能であり、柔軟な考え方が求められると実感しました。特に、愛の価値の算出方法に触れた際は、自分の考えの枠を超える新たな視点に出会い、非常に勉強になりました。そして、これまで耳にしていた「Apple to Apple」という言葉の意味を実体験に基づいて理解することができ、当時の意図にハッとする瞬間がありました。加えて、どのデータが適切かという判断には個人差があることを実感し、さらなる経験の積み重ねが重要だと感じました。 学びはどう活かす? 今回の学びは、商品の販売企画やプロモーション活動にも役立つと考えています。実際、講義を受けた後からは、販売企画の場面で比較を意識するようになり、データ分析を通じて「新しいことがわかる楽しさ」を感じ始めています。 数字以外の視点は? さらに、来週からは数字以外の情報を分析する予定であり、どのような視点で分析を進めるのかが楽しみです。また、得られた情報を効果的に伝える方法についても興味があります。グラフや表、あるいは絵など、さまざまな手法がどのように利用されているのか、また絵を用いる場合にはどのようなアイデアが生み出されるのか、実際に皆さんのお話を聞いてみたいと思います。

戦略思考入門

常識を覆す独自アイデア

何が差別化の鍵? ありきたりのアイデアに簡単に飛びつくのではなく、徹底的に考え抜くことで差別化が実現できると考えます。その際、他業界の事例や多くの知見を活用することが重要です。 本当に新たな視点は? ライバル企業に過度に意識を向けるのではなく、全く新しいアプローチを模索することが求められます。市場や顧客のニーズと自社の強みを見極め、従来とは異なる視点から製品やサービスを企画する姿勢が大切です。 持続可能な施策は? 差別化を考える際には、実施する施策が持続可能であるかどうかも十分に検討する必要があります。加えて、業務プロセスや組織としての能力を高めることで、模倣が困難な体制を築くことが差別化を確固たるものにします。 比較以外の学びは? これまでのアプローチは、同業他社との比較を通じて差異を見出すことに重点を置いていました。しかし、今後はあえてライバル比較の枠組みから離れ、他業界の成功事例を学び、その中で差別化の要素を見出すことにシフトしていきます。 成功事例を追えてる? 具体的には、BtoBのサービス業界で業界シェアを拡大している優良事例を取り上げ、どのように差別化を実現してきたかを研究します。その中から自社に応用可能な要素を抽出します。 市場の未来はどう? さらに、マクロ環境の分析や顧客分析を通じて、今後市場でニーズが拡大すると仮説される分野を見極め、自社の強みを活かした新たなサービスや施策を検討します。そして、その計画の中にどのように差別化を組み込むかを丁寧に考察していきます。

戦略思考入門

独自資源活用で築く組織の未来

資源はどう評価? 組織の競争優位は、組織が保有する経営資源にあると感じました。資源は、経済的価値、希少性、模倣困難性、そして組織としての活用能力の観点から評価され、これらを持続的に創出することが、顧客に選ばれる大きな要因だと思います。 強みをどう見極め? そのためには、自社の強みを正確に認識し、しつこく思考を深める姿勢が必要です。同時に、内部資源に固執せず、外部の知見や資源を柔軟に取り入れることも大切です。ただし、競合他社の動向を過度に意識しすぎず、自社の軸をしっかり保つことが求められています。 独自性は感じる? 自院の経営資源を分析した結果、特に模倣困難性において評価すべき独自性が見受けられました。設備や人材というハード面では大きな差はないものの、設立の歴史や地域からの信頼・貢献といったソフト面においては、他院には容易に模倣できない価値があると感じます。 戦略はどう伝える? こうした独自の資源を土台に、いかに価値ある戦略を打ち出し、持続可能な競争優位を確立するかが今後の課題です。そのためには、戦略や方針を見える化し、組織全体に一体感をもって浸透させることが重要だと思います。 メンバーはどう活か? また、さまざまなフレームワークを活用して分析した結果を組織のメンバーに浸透させるためには、まずは要点をわかりやすい形で整理し、資料などを通して共有することが必要です。さらに、各メンバーが実践的に活用できるよう、対話やディスカッションを重ね、現場に定着させる工夫を講じることが効果的だと考えます。

戦略思考入門

自分らしさ再発見!夢を描く学びの瞬間

自社と競合の違いは? 差別化を考える際は、まず自社や競合の特徴を整理し、どのターゲットに対して差別化を図るのかを明確にすることが重要です。競合は自社が属する業種に限らず、お客様のニーズを踏まえて多角的に捉える必要があります。 価値と実現性は? 次に、差別化のポイントとして、顧客にとっての価値、自社での実現可能性、持続可能性、そして模倣されにくいかどうかを確認します。一般的なアイディアに流されず、あまりライバルを意識しすぎないことも大切です。 技術と組織を見直す? また、差別化戦略を検討する際、自社の技術や品質の新規性・優位性だけでなく、長年培ってきた組織体制や人材スキル、歴史的背景など、模倣困難な資源も幅広く考慮する必要があります。 強みの整理方法は? 業務上、事業横断の施策検討時には、VRIO分析を用いて自社の強みを整理した上で、その施策の有効性を客観的に判断することが求められます。目に見える資源だけでなく、無形の資産も言語化して整理することで、より明確な分析が可能となります。 防災施策をどう考える? 災害・防災対策の企画立案など横断的な施策の場合も、VRIO分析で自社の強みを把握しつつ、実現可能性(コスト面)、持続性、競合への模倣耐性、そして組織での実行可能性を意識して説明できるようにすることが重要です。さらに、言語化されにくい無形資産にも注目し、「ハード面」だけでなく「ソフト面」の価値にも着目して意見交換を行うことで、より効果的な差別化を実現する方針です。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

戦略思考入門

競争優位性を築くための差別化戦略の極意

顧客視点の差別化戦略 差別化を考える際には、まず顧客の視点を重視することが重要です。単に「競合と異なる」だけではなく、自社が実現できることや競合が真似しにくいことを意識することで、競争優位性を持つ施策となります。今回の講座では、ポーターの3つの戦略やVRIO分析のフレームワークを学びました。それらを活用することで、「顧客にとって価値があるのか」、「顧客視点で競合を意識した施策か」、「実現可能性や持続可能性があるか」を判断し、効果的な差別化を行うことが重要です。 コンセンでの優位性構築法とは? また、講座で学んだポイントを活かせば、コンタクトセンター運営においても差別化を図り、競争優位性を築くことができると感じました。顧客体験の向上やテクノロジーの活用、人材の育成とエンゲージメント、社会的課題への対応、持続可能性と社会貢献を総合的に考慮することで、他社との差別化を実現し、持続的な成長を目指すことができると考えます。 競合情報の収集法は? さらに、競合他社の情報をさらに詳しく知る必要があります。公式ウェブサイトやプレスリリース、年次報告書を定期的にチェックし、業界レポートや市場調査を活用するとよいでしょう。顧客インタビューやアンケート調査で直接フィードバックを得たり、ソーシャルメディアやオンラインレビューサイトを監視したりすることで、情報収集を行います。また、業界イベントやネットワーキングでも情報を集め、SEOツールやソーシャルメディア分析ツールも活用して、競合のオンライン活動を分析します。

クリティカルシンキング入門

論理的思考で世界が変わる!ビジネススキル成長記

論理的思考の理解を深めるには? WEEK1での学習を通じて、ビジネスで求められる「論理的思考」について理解が深まりました。特に「自分の考えは偏ること」を理解したうえで、「他にないか?」を考えることが重要であると学びました。この学びにより、視点・視座・視野の3つの視を意識することの重要性を理解しました。今週の学習では、自分の癖や弱点ではなく、仕組みとして理解できたことが大変有意義でした。 クリティカルシンキングで会議をリードする方法 私は仕事でクリティカルシンキングを活用し、特に社内外の会議で意見を述べる際に論理的な説明をするスキルを向上させたいと考えています。特に目上の方や経験豊富な相手に対しても、納得感を持って自身が導きたいゴールに着地できるようになりたいです。また、困難な課題に直面したときに適切な解決策を見つけ、チームを導けるようにもなりたいと思っています。 常識に囚われず新たな視野を持つ方法とは? 特に強化すべきだと感じたのは、「自分の考えは偏るもの」であることを常に意識する点です。これまで経験や勘で業務をこなしてきたため、偏りが大きいと感じています。また、常識に囚われすぎる傾向もあるため、視野についても自分の物差しで物事を瞬間的に判断せず、非常識な可能性についても常に問い続ける癖をつけることが必要です。ビジネスにおいて論理的思考を使いこなせるよう、業務中に物事を判断する時や意見を求められる時、メールを作成する際には、一度立ち止まって考え直すことを心がけ、定着させたいと思います。

戦略思考入門

見える化で挑むコスト改革

学びで何が変わった? 今週は、規模の経済性、習熟効果、範囲の経済性について学びました。これらはコスト削減に役立つという認識は以前からありましたが、具体的に言葉にして整理されることで、より実感できるようになりました。また、効果が見られない場合もあるという説明を受け、自分自身がその点に気づいていなかったことを再認識しました。 ネット効果をどう見る? また、過去にゲーム業界、現在はIT業界にいるため、ネットワーク経済性に関しては日常的に意識する場面が多いですが、今回の学びにより、普段はあまり意識していなかった部分も含めて、再確認することができました。 固定費削減の秘訣は? 私の所属する会社はデータ分析をビジネスの柱としており、これまで競合が比較的少なく、専門職であったため高コストでも許容されていました。しかし、最近ではLLMやAIエージェントの登場で、専門職に限定されない業務も増えているため、差別化戦略を検討する一方で、コスト削減が重要な課題となっています。いかに固定費を下げ、売上や利益を向上させるかが喫緊のテーマとなっており、今回の学びは具体的な施策を検討する際の重要な軸として活用していこうと考えています。 可視化で議論進む? 今後は、各施策にフレームワークを適用して抜け漏れがないか、また見落としているメリットやデメリットがないかを整理し、可視化していく予定です。上司とのディスカッションは口頭で進むことが多いため、こうした可視化を通じて議論をより明確に進めていきたいと思います。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ語れないデータの魅力

平均値だけじゃない? データを可視化する際、平均値を中心に考えがちですが、加重平均や幾何平均といった別の手法も存在し、目的に応じて使い分けが必要だと改めて感じました。また、平均値は外れ値の影響を受けやすいため、標準偏差での比較やグラフを用いて全体のばらつきにも注目することが重要であると学びました。 ヒストグラムの理由は? 年齢分布のグラフについては、ヒストグラムを選択しましたが、その理由が十分に明確にできていなかったと感じています。なぜヒストグラムが最適なグラフであるのか、今後は選択した理由を具体的に説明できるようにしていきたいと思います。 指標の選択は? 過去データとの比較を行う際、単純平均や割合のみに頼るのではなく、数値の規模やばらつきも考慮して加重平均や幾何平均、さらには中央値など、複数の指標を取り入れる必要があると再認識しました。 仮説思考はどう? また、データ分析のプロセスにおいて、これまであまり意識していなかった作業の流れを見直し、今回学んだ「仮説思考のプロセス」を参考に、目的を明確にし仮説を立てながら作業を進めていくことが大切であると感じました。 資料のまとめ方は? さらに、分析データを資料にまとめる際には、記載している数値(代表値)がどのようなものなのか、またどのようにグラフ化しているのかを明確にすることが求められると考えています。業種によっても適切な可視化方法が異なるため、差し支えない範囲でその違いを把握し、説明できるよう努めたいと思います。

戦略思考入門

差別化を成功させるフレームワーク活用法

自社状況はどう把握する? 差別化を検討する場面では、自社の現状を正確に把握することが不可欠です。これを実現するために、フレームワークを活用することで、見落としなく効率的に分析が行えます。 差別化の基準は何? 「良い差別化」を考える際には、次の点を確認する必要があります。まず、顧客が求めているものかどうか。そして、その差別化の実現性や持続可能性はあるのか。他社が容易に追随できないかどうかも重要な視点です。 独自視点はどう活かす? さらに「ユニークな差別化」を図るためには、他業界を参考にしたり、集合知を活用したり、必要に応じて外部の力を借りたりすることが求められます。また、ライバルを過度に意識しすぎないことも大切です。 施策成果はどう確認? 現在、ペーパーレスの推進に向けた様々な施策を進めていますが、それが自社の強みに繋がるよう差別化できているか検討したいと考えています。また、業務改善の際には、差別化に繋がるかを再評価する観点で進めてみる予定です。そして、業務削減やコスト削減の場面では、VRIO分析を通じて自社の経営資源を明確にし、強みを活かせるようメリハリのある予算削減を行いたいと考えています。 具体策はどう選ぶ? 私は、すぐに具体的なアイディアに飛びつく傾向がありますので、一度はフレームワークを使って俯瞰的に物事をとらえ、自社の強みを生かした手法を選びたいと考えています。自分の部署において何が差別化につながるのか、VRIOを用いて分析を進めてみるつもりです。

「意識 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right