戦略思考入門

戦略思考で未来を切り拓く秘訣

戦略思考を深掘りするには? 戦略思考について改めて考えてみました。具体的なフレームワークを用いて書き出してはいないのですが、一部については無意識に頭の中で実行していたようです。ですが、文字に起こすことにより、自分の理解を深め、より具体的な形にすることができました。 進捗確認のポイントは? 新規プロジェクトの立案だけでなく、進捗の確認の際にも、「ゴール確認→環境分析→捨てる勇気」といったプロセスを繰り返すことで、効率的かつ効果的な結果を得られると感じます。さらに、最新の動向に基づいた分析が必要だと考えています。マニュアルや慣習に依存しがちな面があるため、それにも注意を払いたいです。 自分の言葉は合ってる? また、他人の話を聞いてわかった気になるのではなく、自分の言葉でアウトプットすることも重要です。目標設定だけでなく、その目標に至る過程、特に「捨てられるものはないか」を意識することが肝心です。慣例的に行っていることが本当に必要なのか、利益が停滞していないか、しっかりと精査する必要があります。 変化にどう対応する? さらに、時代の流れを敏感に捉え、情報収集を怠らないようにし、過去の成功体験に囚われない姿勢が重要です。自社や自分の強みを振り返り、差別化を意識し続けることが求められます。

データ・アナリティクス入門

問題を見極める力が成長を促す

問題の本質は何か? 最初に重要なのは、「What(何が問題か)」をしっかりと見極めることです。具体的なデータを丁寧に集め、それを基に問題を特定することが肝心です。そして、問題を見つけた後は、その問題がなぜ起きているのか(Why)をよく考える必要があります。よくありがちなのは、「何が問題か(Where)」を見つけただけで、「どう解決するか(How)」に飛びついてしまい、WhatとWhyを飛ばしてしまうことです。これでは、解決策が不十分になることが多くなります。 直感に頼りすぎていない? このような経験から、私はしばしばWhatとWhyを深く考えず、直感に頼って行動しがちだと反省しています。たとえ直感的に問題や解決策が思い浮かぶとしても、しっかりと事実と原因を見極めた上で、効果的なHowを導き出すことを意識します。 データ収集と原因分析のステップ まずは、対象としている状況に関連するデータをしっかりと集め、実際にどこが理想的な姿と比べて差が大きいのかを検討します。次に、その問題の原因が何であるかや、その問題がどのような影響を及ぼすのかを考えます。原因を明確にし、その問題をどのように解決するかを考えることが重要です。このプロセスを日々の中で繰り返すことで、自分自身の考え方を確立していきます。

戦略思考入門

差別化戦略で営業力を高める方法

戦略軸とVRIOはどうする? 差別化戦略を考える際の集中、差別化、コストリーダーシップといった軸について、以前はあまり意識していませんでした。今後はこれらの軸をしっかりと意識し、無駄のないよう整理しながら戦略を進めていきたいと思っています。また、VRIO分析では、経済価値、希少性、模倣困難性、優位性の観点から施策やサービスの妥当性を精査するということを初めて知り、今後の検討に際してこの軸を用いてしっかりと分析を行っていきたいと考えています。 差別化戦略はどう進める? 現在の業務においては差別化戦略を活用する機会が少ないと感じていますが、自分自身の立ち位置を社内で高めるには、特定の分野に集中して取り組むことが役立つのではないかと考えました。また、営業向けの研修を多く行っている中で、クライアント向けに提案や戦略を考える際、このVRIOフレームワークを活用することで、より価値の高い提案が可能になると感じています。ぜひ試してみたいと思います。 商談研修はどう見直す? 現在、商談のための営業研修プログラムの見直しを進めています。商談での提案内容を考える際に、クライアントに対してどの施策がVRIOフレームで見て価値があるものかをきちんと検証できるようなステップを組み入れていきたいと考えています。

データ・アナリティクス入門

問題解決へのMECE活用術

問題点の把握はどう進める? まず、問題点をきちんと把握し、理想の姿と現在の状況との差を捉えることが重要です。そのためには、物事を様々な角度から分析し、分解する必要があります。平均的に一括りで捉えると、真の問題を見逃す恐れがあります。ここで、MECE(Mutually Exclusive, Collectively Exhaustive)の原則を意識すると、要素を漏れなく重複なく分けることができ、問題の明確化から課題設定がしやすくなります。 数字の状況をどう把握する? 数字の状況や問題点を把握する際には、つい平均で語られることが多くなります。しかし、細部までしっかりと捉えた上でサマリーをすることが大切です。そして、いつでも元に戻れるように、プロセスを明確にしてツリー構造として残しておく必要があります。これを怠ると、感覚的な議論と空論の間を行き来することが多く、物事が進まない原因となります。 視点設定と情報分解の秘訣は? 数字や定量的情報で状況を表し、要素分解を行うことが鍵です。この際、視点の設定が非常に大切ですが、解決したい問題、本来の目標、最終目的を意識し、人に聞きながら自分の考えを伝える形で整理していきます。立ち戻る目的を明確にすることで、偏見がかからないように注意することも重要です。

データ・アナリティクス入門

収支分析のプロになれる!問題解決力徹底強化セミナー

問題解決の新しい視点を学ぶ 問題解決において、原因や解決すべき課題を特定する際には、現状と理想の姿との差だけを見るのではなく、その差の割合などの影響も考慮することが重要であると学びました。 思考プロセスの再確認は効果的か? また、思考する際にはWhat、Where、Why、Howといったステップで考えることや、MECE(モレなくダブりなく)で考える重要性を再認識しました。 数字の乖離をどう対処する? 収支分析を行う際、複数の資料から数字を作成していくプロセスで、資料間の数字の乖離が大きくなることがあります。このような場合、原因を特定して修正する必要がありますが、Week2で学んだ問題解決のプロセスを意識することで、原因特定の時間を短縮し、より精緻な資料を作成できると感じています。 資料作成時に気をつけるべきことは? 資料作成時に数字の乖離が発生した際には、やみくもに資料を見返すのではなく、乖離の大きい箇所や影響度を考慮しながら、順番に細かく確認することで、より早く原因を特定することが可能です。 チームでの確認プロセスは有効か? さらに、この考え方をチームメンバーにも共有し、異なる視点から同様の確認を行うことで、資料の精度をさらに高めることができます。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

マーケティング入門

顧客の声を活かす!差別化戦略の秘訣

顧客の声をどう活かす? 顧客の声から差別化商品を生み出すというプロセスが、大手の競合企業によりすぐに無効化されるという事実がとても印象的でした。その結果、顧客ではなく競合に意識が向いてしまうこともしばしばあります。しかし、大切なのはお客様の声を聴き、彼らの価値観や対象のイメージについて仮説を立て、確認することです。私自身もつい競合に目を向けてしまうことがありますが、顧客の中に答えがあるという視点を忘れずに、戦略を立てていきたいと考えています。 どの提案が信頼される? 顧客のインサイトや思考、評価を重視した提案ができるようになるためには、接客業においてお客様の声を大事にすることがよく求められています。その理由をぶれずに伝えられる責任者でありたいです。同時に、ブランドエクイティのような定量化できないが重要な要素についても、しっかり可視化し、戦略提案に生かせるように考えていきます。 AIを駆使して何を目指す? 現在では、口コミやインターネット情報から顧客の心理を読み取る機会がたくさんあります。そうした膨大な情報を活用するために、AIやGPTも駆使しながら、効率的に情報を取得し、納得感を持つ戦略提案や定量的なプレゼンテーションができるようにしていきたいと思っています。

クリティカルシンキング入門

データ分解の新たな視点で未来を開く

数字分解の効果は? 数字を分解することで、データの解像度が向上します。分解の方法によって、見やすくなる効果があります。また、分け方の工夫によって差が現れたり隠れたりするため、多様な分け方が必要です。より多くのデータと分け方が組み合わさることで、分析の精度と確度に信頼性が増します。仮に思ったような結果が得られなくても、その分析が不要だったと分かるだけでも価値があります。そして、新たな分析を試みる契機となります。 グラフ作成の落とし穴は? データを分析する際、時には望む結果が出るようにグラフを作成してしまうことがあります。しかし、今回の学びから、精度と確度を上げるためにはデータのさらなる分解が必要であると感じました。今後は、MECE分解の3原則を意識してデータ分析を進めていきたいと思います。 再検証は必要? まず、過去の不具合事例を再度分析し直してみようと思います。一度結論を出した事象を再検証することで、今回の学びがどれほど有効であったかを確かめ、同様の結論に至るかどうかを確認するのは興味深い取り組みです。データ分析は非常に重要で、誤った原因を見つけてしまうと、対策や改善がすべて無駄になる可能性があります。そのため、より多くの分解を心がけたいと思います。

データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

戦略思考入門

最速で切り拓く戦略の道

学びの流れはどう? week01からweek05までの学びを改めて振り返る形式で講座が進められたため、全体の流れがつながり、知識の定着に大いに役立ちました。各週では、week01の「戦略的思考とは」、week02の「整合性をとる」、week03の「差別化する」、week04の「捨てる(選択する)」、そしてweek05の「本質・メカニズムをとらえる」といったテーマに沿って学ぶことができました。 最短到達の意義は? 今回の講座で学んだことは、ルーチン作業以外のあらゆる業務に当てはまると実感しています。ゴールを明確にすることはもちろん意識してきましたが、これまで可能な限り最速・最短で到達するという視点が不足していたと感じます。そのため、今後はこの考え方を常に念頭に置き、すべての仕事に活かしていきたいと思います。 戦略思考は本質か? また、戦略的思考の一手法として「可能な限り最速・最短距離で到達する」ことに特に注目したいと考えています。偶然にも、弊社のスローガンに同様の趣旨が込められており、スクリーンセーバーにそのメッセージが表示されることから、見るたびに自らがその意識を持って業務に取り組んでいるかを常に自問自答するようにしています。

戦略思考入門

選択と差別化の成功と失敗を学ぶ

どうして失敗を重視? 規模の経済や多角化について、成功例だけではなく失敗例も学びました。「なんとなくよさそう」という選択肢に飛びつかず、「うまくいかないケースはないか?」を意識して確認する必要があると感じました。 補足はどう工夫? 総合演習では、情報が足りない時にどのように補うかを考えながら取り組みました。日常生活でも、安易に選択してしまうことがあるのかもしれないと感じました。選択するかしないかを広い視野でとらえ、その背景を分析し、メリットとデメリットを正確に把握する必要があります。 どう差別化実現? 現在取り組んでいるペーパーレス推進の中では、「捨てる」ことと「他社との差別化」を両立する施策を意識しています。業界内の動向だけでなく、他業界での先行事例も注視しています。「なんとなくよさそう」で判断せず、定量的データを用いて根拠のある提案を行うよう努めています。 何を見極める? 定量的データを活用し、同業界だけでなく他業界の事例も広く集め、自社に活用できる部分がないかを検討しています。その際、自社の差別化につながるかどうかという視点を重視しています。また、ペーパーレス実現後の影響も考慮した施策を構築しています。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

「意識 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right